論文の概要: Self-Supervised Learning of Part Mobility from Point Cloud Sequence
- arxiv url: http://arxiv.org/abs/2010.11735v2
- Date: Tue, 2 Mar 2021 09:34:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 07:12:51.477782
- Title: Self-Supervised Learning of Part Mobility from Point Cloud Sequence
- Title(参考訳): ポイントクラウドシーケンスからのパートモビリティの自己教師付き学習
- Authors: Yahao Shi, Xinyu Cao and Bin Zhou
- Abstract要約: 動的対象を表す点列から,部品のセグメント化と動作特性の予測を行う自己教師型手法を提案する。
シーケンスの連続するフレーム間の相関を利用してトラジェクトリを生成する。
動作部分分割, 動き軸予測, 動き範囲推定など, 様々なタスクにおける提案手法の評価を行った。
- 参考スコア(独自算出の注目度): 9.495859862104515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Part mobility analysis is a significant aspect required to achieve a
functional understanding of 3D objects. It would be natural to obtain part
mobility from the continuous part motion of 3D objects. In this study, we
introduce a self-supervised method for segmenting motion parts and predicting
their motion attributes from a point cloud sequence representing a dynamic
object. To sufficiently utilize spatiotemporal information from the point cloud
sequence, we generate trajectories by using correlations among successive
frames of the sequence instead of directly processing the point clouds. We
propose a novel neural network architecture called PointRNN to learn feature
representations of trajectories along with their part rigid motions. We
evaluate our method on various tasks including motion part segmentation, motion
axis prediction and motion range estimation. The results demonstrate that our
method outperforms previous techniques on both synthetic and real datasets.
Moreover, our method has the ability to generalize to new and unseen objects.
It is important to emphasize that it is not required to know any prior shape
structure, prior shape category information, or shape orientation. To the best
of our knowledge, this is the first study on deep learning to extract part
mobility from point cloud sequence of a dynamic object.
- Abstract(参考訳): 部分移動解析は3次元物体の機能的理解を実現する上で重要な側面である。
3次元物体の連続的な部分運動から部分移動性を得るのは自然である。
本研究では,動的物体を表す点雲列から,動作部品のセグメント化と動作特性の予測を行う自己教師手法を提案する。
点雲列からの時空間情報を十分に活用するために、点雲を直接処理するのではなく、系列の連続フレーム間の相関を利用して軌道を生成する。
本稿では,その部分的な剛性運動とともに軌跡の特徴表現を学ぶために,PointRNNと呼ばれる新しいニューラルネットワークアーキテクチャを提案する。
動作部分分割, 動き軸予測, 動き範囲推定など, 様々なタスクにおける提案手法の評価を行った。
その結果,本手法は,合成データと実データの両方において,従来の手法よりも優れていた。
さらに,本手法は,新しいオブジェクトや見えないオブジェクトに一般化することができる。
事前の形状構造、事前の形状カテゴリー情報、形状方向を知る必要はないことを強調することが重要である。
私たちの知る限りでは、これは動的オブジェクトのポイントクラウドシーケンスから部分モビリティを抽出する、ディープラーニングに関する最初の研究です。
関連論文リスト
- Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
アーティキュレートされたオブジェクト操作は、オブジェクトの軸を慎重に考慮する必要がある、正確なオブジェクトインタラクションを必要とする。
従来の研究では、対話的な知覚を用いて関節のある物体を操作するが、通常、オープンループのアプローチは相互作用のダイナミクスを見渡すことに悩まされる。
本稿では,対話的知覚と3次元点雲からのオンライン軸推定を統合したクローズドループパイプラインを提案する。
論文 参考訳(メタデータ) (2024-09-24T17:59:56Z) - AGAR: Attention Graph-RNN for Adaptative Motion Prediction of Point
Clouds of Deformable Objects [7.414594429329531]
変形可能な3Dオブジェクトのポイントクラウド予測のための改良されたアーキテクチャを提案する。
具体的には、変形可能な形状を扱うために、点雲の空間構造を学習し、活用するグラフベースのアプローチを提案する。
提案した適応モジュールは各点の局所的および大域的な動きの合成を制御し、変形可能な3Dオブジェクトの複雑な動きをより効率的にモデル化することができる。
論文 参考訳(メタデータ) (2023-07-19T12:21:39Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - Semi-Weakly Supervised Object Kinematic Motion Prediction [56.282759127180306]
3Dオブジェクトが与えられた場合、運動予測は移動部と対応する運動パラメータを識別することを目的としている。
階層的部分分割と移動部パラメータのマップを学習するグラフニューラルネットワークを提案する。
ネットワーク予測は、擬似ラベル付き移動情報を持つ大規模な3Dオブジェクトを生成する。
論文 参考訳(メタデータ) (2023-03-31T02:37:36Z) - Unsupervised Kinematic Motion Detection for Part-segmented 3D Shape
Collections [14.899075941080541]
本研究では,部分分割型3次元形状収集における調音運動の発見のための教師なしアプローチを提案する。
私たちのアプローチは、カテゴリクロージャと呼ばれる概念に基づいています。オブジェクトの部分の有効な記述は、オブジェクトを同じ意味圏に保つべきです。
我々は、PartNet-Mobilityデータセットから部品の動きを再発見するためにこれを用いてアプローチを評価した。
論文 参考訳(メタデータ) (2022-06-17T00:50:36Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
テンポラルな文グラウンドディングは、与えられた文クエリに従って、意図しないビデオのターゲットセグメントをセマンティックにローカライズすることを目的としている。
これまでのほとんどの研究は、ビデオ全体のフレーム全体のフレームレベルの特徴を学習することに集中しており、それらをテキスト情報と直接一致させる。
我々は,光フロー誘導型モーションアウェア,検出ベース外観アウェア,3D認識オブジェクトレベル機能を備えた,動き誘導型3Dセマンティック推論ネットワーク(MA3SRN)を提案する。
論文 参考訳(メタデータ) (2022-03-06T13:57:09Z) - "What's This?" -- Learning to Segment Unknown Objects from Manipulation
Sequences [27.915309216800125]
本稿では,ロボットマニピュレータを用いた自己教師型把握対象セグメンテーションのための新しいフレームワークを提案する。
本稿では,モーションキューとセマンティック知識を共同で組み込んだ,エンドツーエンドのトレーニング可能な単一アーキテクチャを提案する。
我々の手法は、運動ロボットや3Dオブジェクトモデルの視覚的登録にも、正確な手眼の校正や追加センサーデータにも依存しない。
論文 参考訳(メタデータ) (2020-11-06T10:55:28Z) - DyStaB: Unsupervised Object Segmentation via Dynamic-Static
Bootstrapping [72.84991726271024]
我々は,コヒーレントなシーン全体を移動しているように見えるシーンの画像の一部を検出し,分割するための教師なしの手法について述べる。
提案手法はまず,セグメント間の相互情報を最小化することにより,運動場を分割する。
セグメントを使用してオブジェクトモデルを学習し、静的なイメージの検出に使用することができる。
論文 参考訳(メタデータ) (2020-08-16T22:05:13Z) - AutoTrajectory: Label-free Trajectory Extraction and Prediction from
Videos using Dynamic Points [92.91569287889203]
軌道抽出と予測のための新しいラベルなしアルゴリズムAutoTrajectoryを提案する。
動画中の移動物体をよりよく捉えるために,ダイナミックポイントを導入する。
ビデオ内の歩行者などの移動物体を表すインスタンスポイントに動的ポイントを集約する。
論文 参考訳(メタデータ) (2020-07-11T08:43:34Z) - Any Motion Detector: Learning Class-agnostic Scene Dynamics from a
Sequence of LiDAR Point Clouds [4.640835690336654]
動き検出と動きパラメータ推定のための時間的文脈アグリゲーションの新しいリアルタイム手法を提案する。
本稿では,固有点雲列の固有オドメトリック変換に匹敵する性能で,リアルタイムな推論を実現するためのエゴモーション補償層を提案する。
論文 参考訳(メタデータ) (2020-04-24T10:40:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。