論文の概要: Flow-FL: Data-Driven Federated Learning for Spatio-Temporal Predictions
in Multi-Robot Systems
- arxiv url: http://arxiv.org/abs/2010.08595v1
- Date: Fri, 16 Oct 2020 19:09:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 22:24:28.663034
- Title: Flow-FL: Data-Driven Federated Learning for Spatio-Temporal Predictions
in Multi-Robot Systems
- Title(参考訳): Flow-FL:マルチロボットシステムにおける時空間予測のためのデータ駆動型フェデレーション学習
- Authors: Nathalie Majcherczyk, Nishan Srishankar and Carlo Pinciroli
- Abstract要約: 我々は,フェデレートラーニングフレームワークが,コネクテッドロボットチームの分散データから集合的に学習する方法について述べる。
このフレームワークは通常、データをローカルに収集し、モデルのニューラルネットワーク重みを更新し、グローバルモデルに集約するためにサーバにアップデートを送信する。
- 参考スコア(独自算出の注目度): 16.887485428725043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we show how the Federated Learning (FL) framework enables
learning collectively from distributed data in connected robot teams. This
framework typically works with clients collecting data locally, updating neural
network weights of their model, and sending updates to a server for aggregation
into a global model. We explore the design space of FL by comparing two
variants of this concept. The first variant follows the traditional FL approach
in which a server aggregates the local models. In the second variant, that we
call Flow-FL, the aggregation process is serverless thanks to the use of a
gossip-based shared data structure. In both variants, we use a data-driven
mechanism to synchronize the learning process in which robots contribute model
updates when they collect sufficient data. We validate our approach with an
agent trajectory forecasting problem in a multi-agent setting. Using a
centralized implementation as a baseline, we study the effects of staggered
online data collection, and variations in data flow, number of participating
robots, and time delays introduced by the decentralization of the framework in
a multi-robot setting.
- Abstract(参考訳): 本稿では,連携学習(federated learning, ffl)フレームワークが,ロボットチームにおける分散データから集団学習を実現する方法を示す。
このフレームワークは通常、データをローカルに収集し、モデルのニューラルネットワーク重みを更新し、グローバルモデルに集約するためにサーバにアップデートを送信する。
この概念の2つの変種を比較し,FLの設計空間について検討する。
最初の変種は、サーバがローカルモデルを集約する従来のFLアプローチに従っている。
Flow-FLと呼ばれる第2のバリエーションでは、ゴシップベースの共有データ構造を使用することで、集約プロセスはサーバレスになります。
両変種とも、ロボットが十分なデータを集める際にモデル更新に貢献する学習プロセスの同期にデータ駆動機構を用いる。
エージェント軌道予測問題を用いて,マルチエージェント環境でのアプローチを検証する。
集中型実装をベースラインとして,オンラインデータ収集の停滞の影響,データフローの変動,参加ロボットの数,マルチロボット環境におけるフレームワークの分散化による遅延時間について検討した。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Federated Learning with MMD-based Early Stopping for Adaptive GNSS Interference Classification [4.674584508653125]
フェデレートラーニング(FL)は、複数のデバイスがローカルサーバ上のデータを維持しながら、グローバルモデルを協調的にトレーニングすることを可能にする。
本稿では,グローバルサーバ上でのモデルの重み付けと数ショット学習を用いたFL手法を提案する。
FLの模範的な応用は、グローバルナビゲーション衛星システム(GNSS)受信機からのスナップショットに基づいた干渉分類のために、高速道路に沿って機械学習モデルを編成することである。
論文 参考訳(メタデータ) (2024-10-21T06:43:04Z) - Prototype Helps Federated Learning: Towards Faster Convergence [38.517903009319994]
Federated Learning(FL)は、複数のクライアントが協力して、生データを交換することなく、共有モデルをトレーニングする分散機械学習技術である。
本稿では,従来のフェデレーション学習プロセスの最後のグローバルイテレーションにわずかな変更を加えるだけで,推論性能を向上する,プロトタイプベースのフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-22T04:06:29Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - FedSiam-DA: Dual-aggregated Federated Learning via Siamese Network under
Non-IID Data [21.95009868875851]
フェデレートされた学習は、データアイランドに対処できるが、実際のアプリケーションで不均一なデータでトレーニングすることは依然として困難である。
本稿では,新しい二重集約型コントラスト学習手法であるFedSiam-DAを提案する。
論文 参考訳(メタデータ) (2022-11-17T09:05:25Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
協調エッジ学習(CE-FL)は、分散機械学習アーキテクチャである。
CE-FLの過程をモデル化し,分析訓練を行った。
実世界のテストベッドから収集したデータを用いて,本フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2022-03-26T00:41:57Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
フェデレートラーニング(Federated Learning, FedL)は、一連の無線デバイスにモデルトレーニングを配布する一般的なテクニックとして登場した。
我々は,FedLアーキテクチャを3次元に拡張した並列逐次学習(PSL)を開発した。
我々の分析は、分散機械学習におけるコールド対ウォームアップモデルの概念とモデル慣性について光を当てている。
論文 参考訳(メタデータ) (2022-02-07T05:11:01Z) - Ensemble Distillation for Robust Model Fusion in Federated Learning [72.61259487233214]
Federated Learning(FL)は、多くのデバイスが機械学習モデルを協調的にトレーニングする機械学習環境である。
現在のトレーニングスキームのほとんどでは、サーバモデルのパラメータと更新されたパラメータをクライアント側から平均化することで、中央モデルを洗練します。
本研究では,モデル融合のためのアンサンブル蒸留法を提案する。
論文 参考訳(メタデータ) (2020-06-12T14:49:47Z) - Information-Theoretic Bounds on the Generalization Error and Privacy
Leakage in Federated Learning [96.38757904624208]
モバイルネットワーク上の機械学習アルゴリズムは、3つのカテゴリに分類される。
この研究の主な目的は、前述のすべての学習パラダイムに対する情報理論のフレームワークを提供することである。
論文 参考訳(メタデータ) (2020-05-05T21:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。