論文の概要: Tackling Data Heterogeneity in Federated Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2411.15716v1
- Date: Sun, 24 Nov 2024 04:56:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:22:19.722170
- Title: Tackling Data Heterogeneity in Federated Time Series Forecasting
- Title(参考訳): フェデレーション時系列予測におけるデータの不均一性に対処する
- Authors: Wei Yuan, Guanhua Ye, Xiangyu Zhao, Quoc Viet Hung Nguyen, Yang Cao, Hongzhi Yin,
- Abstract要約: 時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
- 参考スコア(独自算出の注目度): 61.021413959988216
- License:
- Abstract: Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting. Although substantial progress has been made in time series forecasting, most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices (e.g., sensors, wearables) to a central cloud server. However, this paradigm has overloaded communication networks and raised privacy concerns. Federated learning, a popular privacy-preserving technique, enables collaborative model training across distributed data sources. However, directly applying federated learning to time series forecasting often yields suboptimal results, as time series data generated by different devices are inherently heterogeneous. In this paper, we propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers. Specifically, Fed-TREND generates two types of synthetic data. The first type of synthetic data captures the representative distribution information from clients' uploaded model updates and enhances clients' local training consensus. The second kind of synthetic data extracts long-term influence insights from global model update trajectories and is used to refine the global model after aggregation. Fed-TREND is compatible with most time series forecasting models and can be seamlessly integrated into existing federated learning frameworks to improve prediction performance. Extensive experiments on eight datasets, using several federated learning baselines and four popular time series forecasting models, demonstrate the effectiveness and generalizability of Fed-TREND.
- Abstract(参考訳): 時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
時系列予測ではかなりの進歩があったが、既存のほとんどの方法は集中的なトレーニングパラダイムに依存しており、分散デバイス(センサ、ウェアラブルなど)から中央クラウドサーバに大量のデータを収集する。
しかし、このパラダイムは通信ネットワークを過負荷にし、プライバシーの懸念を高めている。
一般的なプライバシ保護技術であるフェデレーション学習は、分散データソース間の協調モデルトレーニングを可能にする。
しかし、時系列予測に直接フェデレートした学習を適用すると、異なるデバイスで生成された時系列データが本質的に不均一であるため、しばしば準最適結果が得られる。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
具体的には、Fed-TRENDは2種類の合成データを生成する。
最初のタイプの合成データは、クライアントがアップロードしたモデル更新から代表配信情報をキャプチャし、クライアントのローカルトレーニングコンセンサスを強化する。
第2の種類の合成データは、グローバルモデル更新軌跡から長期的な影響洞察を抽出し、集約後のグローバルモデルを改善するために使用される。
Fed-TRENDは、ほとんどの時系列予測モデルと互換性があり、既存のフェデレーション学習フレームワークにシームレスに統合して予測性能を向上させることができる。
フェデレート学習ベースラインと4つの一般的な時系列予測モデルを用いた8つのデータセットの大規模な実験は、Fed-TRENDの有効性と一般化性を実証している。
関連論文リスト
- Beyond Data Scarcity: A Frequency-Driven Framework for Zero-Shot Forecasting [15.431513584239047]
時系列予測は多くの現実世界の応用において重要である。
従来の予測技術は、データが不足しているか、全く利用できない場合に苦労する。
近年の進歩は、このようなタスクに大規模な基礎モデルを活用することが多い。
論文 参考訳(メタデータ) (2024-11-24T07:44:39Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
時系列およびS時間データにおける拡散モデルの使用について概観し、それらをモデル、タスクタイプ、データモダリティ、実用的なアプリケーションドメインで分類する。
我々は拡散モデルを無条件型と条件付き型に分類し、時系列とS時間データを別々に議論する。
本調査は,医療,レコメンデーション,気候,エネルギー,オーディオ,交通など,さまざまな分野の応用を幅広くカバーしている。
論文 参考訳(メタデータ) (2024-04-29T17:19:40Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - A data filling methodology for time series based on CNN and (Bi)LSTM
neural networks [0.0]
イタリア・ボルツァーノの監視アパートから得られた時系列データギャップを埋めるための2つのDeep Learningモデルを開発した。
提案手法は, 変動するデータの性質を把握し, 対象時系列の再構成に優れた精度を示す。
論文 参考訳(メタデータ) (2022-04-21T09:40:30Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
マルチソースデータセットの不均一性と不規則性は時系列解析において重要な課題となる。
本研究では、異種時系列をモデル化するための新しいアーキテクチャ、PIETSを設計する。
PIETSは異種時間データを効果的にモデル化し、予測タスクにおける他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-09-30T20:01:19Z) - Towards Synthetic Multivariate Time Series Generation for Flare
Forecasting [5.098461305284216]
データ駆動・レアイベント予測アルゴリズムのトレーニングにおける制限要因の1つは、関心のあるイベントの不足である。
本研究では,データインフォームド・オーバーサンプリングを行う手段として,条件付き生成逆数ネットワーク(CGAN)の有用性を検討する。
論文 参考訳(メタデータ) (2021-05-16T22:23:23Z) - Improving the Accuracy of Global Forecasting Models using Time Series
Data Augmentation [7.38079566297881]
GFM(Global Forecasting Models)として知られる多くの時系列のセットでトレーニングされた予測モデルは、競争や実世界のアプリケーションを予測する上で有望な結果を示している。
本稿では,GFMモデルのベースライン精度を向上させるための,データ拡張に基づく新しい予測フレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-06T13:52:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。