Tight Lower Complexity Bounds for Strongly Convex Finite-Sum
Optimization
- URL: http://arxiv.org/abs/2010.08766v2
- Date: Sun, 19 Jun 2022 16:44:00 GMT
- Title: Tight Lower Complexity Bounds for Strongly Convex Finite-Sum
Optimization
- Authors: Min Zhang, Yao Shu, Kun He
- Abstract summary: We derive tight lower complexity bounds of randomized incremental gradient methods, including SAG, SAGA, SVRG, and SARAH, for two typical cases of finite-sum optimization.
Our results tightly match the upper complexity of Katyusha or VRADA when each component function is strongly convex and smooth, and tightly match the upper complexity of SDCA without duality and of KatyushaX when the finite-sum function is strongly convex and the component functions are average smooth.
- Score: 21.435973899949285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finite-sum optimization plays an important role in the area of machine
learning, and hence has triggered a surge of interest in recent years. To
address this optimization problem, various randomized incremental gradient
methods have been proposed with guaranteed upper and lower complexity bounds
for their convergence. Nonetheless, these lower bounds rely on certain
conditions: deterministic optimization algorithm, or fixed probability
distribution for the selection of component functions. Meanwhile, some lower
bounds even do not match the upper bounds of the best known methods in certain
cases. To break these limitations, we derive tight lower complexity bounds of
randomized incremental gradient methods, including SAG, SAGA, SVRG, and SARAH,
for two typical cases of finite-sum optimization. Specifically, our results
tightly match the upper complexity of Katyusha or VRADA when each component
function is strongly convex and smooth, and tightly match the upper complexity
of SDCA without duality and of KatyushaX when the finite-sum function is
strongly convex and the component functions are average smooth.
Related papers
- Projection-Free Variance Reduction Methods for Stochastic Constrained Multi-Level Compositional Optimization [34.628967272528044]
This paper investigates projection-free algorithms for constrained multi-level optimization functions.
By using a stage-wise adaptation, we obtain complexities for convex and strongly convex functions.
arXiv Detail & Related papers (2024-06-06T06:56:56Z) - Optimization on a Finer Scale: Bounded Local Subgradient Variation Perspective [17.5796206457693]
We study nonsmooth optimization problems under bounded local subgradient variation.
The resulting class of objective encapsulates the classes of objective based on the defined classes.
arXiv Detail & Related papers (2024-03-24T22:42:40Z) - First-order Methods for Affinely Constrained Composite Non-convex
Non-smooth Problems: Lower Complexity Bound and Near-optimal Methods [23.948126336842634]
We make the first attempt to establish lower complexity bounds of first-order FOMs for solving a composite non-smooth optimization problem.
We find that our method and the proposed IPG method are almostimprovable.
arXiv Detail & Related papers (2023-07-14T19:59:18Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
We propose algorithms with high-probability convergence results under less restrictive assumptions.
These results justify the usage of the considered methods for solving problems that do not fit standard functional classes in optimization.
arXiv Detail & Related papers (2023-02-02T10:37:23Z) - Efficient First-order Methods for Convex Optimization with Strongly
Convex Function Constraints [3.667453772837954]
We show how to minimize a convex function subject to strongly convex function constraints.
We identify the sparsity pattern within a finite number result that appears to have independent significance.
arXiv Detail & Related papers (2022-12-21T16:04:53Z) - Optimal Algorithms for Stochastic Complementary Composite Minimization [55.26935605535377]
Inspired by regularization techniques in statistics and machine learning, we study complementary composite minimization.
We provide novel excess risk bounds, both in expectation and with high probability.
Our algorithms are nearly optimal, which we prove via novel lower complexity bounds for this class of problems.
arXiv Detail & Related papers (2022-11-03T12:40:24Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - SGD with shuffling: optimal rates without component convexity and large
epoch requirements [60.65928290219793]
We consider the RandomShuffle (shuffle at the beginning of each epoch) and SingleShuffle (shuffle only once)
We establish minimax optimal convergence rates of these algorithms up to poly-log factor gaps.
We further sharpen the tight convergence results for RandomShuffle by removing the drawbacks common to all prior arts.
arXiv Detail & Related papers (2020-06-12T05:00:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.