DIFER: Differentiable Automated Feature Engineering
- URL: http://arxiv.org/abs/2010.08784v2
- Date: Thu, 7 Jan 2021 02:23:16 GMT
- Title: DIFER: Differentiable Automated Feature Engineering
- Authors: Guanghui Zhu, Zhuoer Xu, Xu Guo, Chunfeng Yuan, Yihua Huang
- Abstract summary: Feature engineering, a crucial step of machine learning, aims to extract useful features from raw data to improve data quality.
We propose an efficient gradient-based method called DIFER to perform differentiable automated feature engineering in a continuous vector space.
We show that DIFER can significantly improve the performance of various machine learning algorithms and outperform current state-of-the-art AutoFE methods in terms of both efficiency and performance.
- Score: 12.961270020632362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature engineering, a crucial step of machine learning, aims to extract
useful features from raw data to improve data quality. In recent years, great
efforts have been devoted to Automated Feature Engineering (AutoFE) to replace
expensive human labor. However, existing methods are computationally demanding
due to treating AutoFE as a coarse-grained black-box optimization problem over
a discrete space. In this work, we propose an efficient gradient-based method
called DIFER to perform differentiable automated feature engineering in a
continuous vector space. DIFER selects potential features based on evolutionary
algorithm and leverages an encoder-predictor-decoder controller to optimize
existing features. We map features into the continuous vector space via the
encoder, optimize the embedding along the gradient direction induced by the
predicted score, and recover better features from the optimized embedding by
the decoder. Extensive experiments on classification and regression datasets
demonstrate that DIFER can significantly improve the performance of various
machine learning algorithms and outperform current state-of-the-art AutoFE
methods in terms of both efficiency and performance.
Related papers
- "FRAME: Forward Recursive Adaptive Model Extraction -- A Technique for Advance Feature Selection" [0.0]
This study introduces a novel hybrid approach, the Forward Recursive Adaptive Model Extraction Technique (FRAME)
FRAME combines Forward Selection and Recursive Feature Elimination to enhance feature selection across diverse datasets.
The results demonstrate that FRAME consistently delivers superior predictive performance based on downstream machine learning evaluation metrics.
arXiv Detail & Related papers (2025-01-21T08:34:10Z) - An Automated Data Mining Framework Using Autoencoders for Feature Extraction and Dimensionality Reduction [10.358417199718462]
This study proposes an automated data mining framework based on autoencoders and experimentally verifies its effectiveness in feature extraction and data dimensionality reduction.
Through the encoding-decoding structure, the autoencoder can capture the data's potential characteristics and achieve noise reduction and anomaly detection.
In the future, with the advancement of deep learning and big data technology, the autoencoder method combined with a generative adversarial network (GAN) or graph neural network (GNN) is expected to be more widely used in the fields of complex data processing, real-time data analysis and intelligent decision-making.
arXiv Detail & Related papers (2024-12-03T07:04:10Z) - Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - AGD: an Auto-switchable Optimizer using Stepwise Gradient Difference for Preconditioning Matrix [8.975415409709575]
We propose a novel approach to designing the preconditioning matrix by utilizing the gradient difference between two successive steps as the diagonal elements.
We evaluate AGD on public generalization of Natural Language Computer Vision (CV), and Recommendation Systems (RecSys)
arXiv Detail & Related papers (2023-12-04T06:20:14Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
Performance embeddings enable knowledge transfer of performance tuning between applications.
We demonstrate this transfer tuning approach on case studies in deep neural networks, dense and sparse linear algebra compositions, and numerical weather prediction stencils.
arXiv Detail & Related papers (2023-03-14T15:51:35Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - DiffSkill: Skill Abstraction from Differentiable Physics for Deformable
Object Manipulations with Tools [96.38972082580294]
DiffSkill is a novel framework that uses a differentiable physics simulator for skill abstraction to solve deformable object manipulation tasks.
In particular, we first obtain short-horizon skills using individual tools from a gradient-based simulator.
We then learn a neural skill abstractor from the demonstration trajectories which takes RGBD images as input.
arXiv Detail & Related papers (2022-03-31T17:59:38Z) - Efficient Learning of Generative Models via Finite-Difference Score
Matching [111.55998083406134]
We present a generic strategy to efficiently approximate any-order directional derivative with finite difference.
Our approximation only involves function evaluations, which can be executed in parallel, and no gradient computations.
arXiv Detail & Related papers (2020-07-07T10:05:01Z) - Sample-Efficient Optimization in the Latent Space of Deep Generative
Models via Weighted Retraining [1.5293427903448025]
We introduce an improved method for efficient black-box optimization, which performs the optimization in the low-dimensional, continuous latent manifold learned by a deep generative model.
We achieve this by periodically retraining the generative model on the data points queried along the optimization trajectory, as well as weighting those data points according to their objective function value.
This weighted retraining can be easily implemented on top of existing methods, and is empirically shown to significantly improve their efficiency and performance on synthetic and real-world optimization problems.
arXiv Detail & Related papers (2020-06-16T14:34:40Z) - DADA: Differentiable Automatic Data Augmentation [58.560309490774976]
We propose Differentiable Automatic Data Augmentation (DADA) which dramatically reduces the cost.
We conduct extensive experiments on CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets.
Results show our DADA is at least one order of magnitude faster than the state-of-the-art while achieving very comparable accuracy.
arXiv Detail & Related papers (2020-03-08T13:23:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.