論文の概要: Random Matrix Based Extended Target Tracking with Orientation: A New
Model and Inference
- arxiv url: http://arxiv.org/abs/2010.08820v2
- Date: Mon, 8 Mar 2021 09:36:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 11:37:58.267178
- Title: Random Matrix Based Extended Target Tracking with Orientation: A New
Model and Inference
- Title(参考訳): 指向性を考慮したランダム行列に基づく拡張ターゲット追跡:新しいモデルと推論
- Authors: Bark{\i}n Tuncer, Emre \"Ozkan
- Abstract要約: 本稿では,動的物体の範囲を時間方向の楕円体として表現できる新しい対象追跡アルゴリズムを提案する。
対角正半定行列は、ランダム行列フレームワーク内のオブジェクトの範囲をモデル化するために定義される。
共役性がないため、真の後部の閉形式解析式を見つけることは不可能である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we propose a novel extended target tracking algorithm which is
capable of representing the extent of dynamic objects as an ellipsoid with a
time-varying orientation angle. A diagonal positive semi-definite matrix is
defined to model objects' extent within the random matrix framework where the
diagonal elements have inverse-Gamma priors. The resulting measurement equation
is non-linear in the state variables, and it is not possible to find a
closed-form analytical expression for the true posterior because of the absence
of conjugacy. We use the variational Bayes technique to perform approximate
inference, where the Kullback-Leibler divergence between the true and the
approximate posterior is minimized by performing fixed-point iterations. The
update equations are easy to implement, and the algorithm can be used in
real-time tracking applications. We illustrate the performance of the method in
simulations and experiments with real data. The proposed method outperforms the
state-of-the-art methods when compared with respect to accuracy and robustness.
- Abstract(参考訳): 本研究では,動的物体の広がりを時間変化方向角の楕円形として表現できる拡張目標追尾アルゴリズムを提案する。
対角正半定行列は、対角要素が逆ガンマ先行を持つランダム行列フレームワーク内の対象の範囲をモデル化するために定義される。
結果として得られる測定式は状態変数において非線形であり、共役性がないため真の後方の閉形式解析式を見つけることはできない。
我々は変分ベイズ法を用いて近似推論を行い、固定点反復によって真と近似後部のクルバック・リーブラーの発散を最小限に抑える。
更新方程式は実装が容易であり、アルゴリズムはリアルタイム追跡アプリケーションで使用できる。
実データを用いたシミュレーションおよび実験において,本手法の性能について述べる。
提案手法は, 精度とロバスト性に比較した場合, 最先端の手法よりも優れる。
関連論文リスト
- Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Classification of BCI-EEG based on augmented covariance matrix [0.0]
本稿では,運動画像分類の改善を目的とした自己回帰モデルから抽出した拡張共分散に基づく新しいフレームワークを提案する。
私たちはMOABBフレームワークを使って、いくつかのデータセットといくつかの主題でアプローチを検証します。
論文 参考訳(メタデータ) (2023-02-09T09:04:25Z) - Non-Iterative Recovery from Nonlinear Observations using Generative
Models [14.772379476524407]
この信号は、有界な$k$次元入力を持つ$L$-Lipschitz連続生成モデルの範囲内にあると仮定する。
提案手法は非定性的であり(プロジェクションステップの近似には反復手順を用いる場合もあるが)、高効率である。
論文 参考訳(メタデータ) (2022-05-31T12:34:40Z) - Bayesian inference of ODEs with Gaussian processes [17.138448665454373]
本稿では、ガウス過程を用いて未知のODEシステムの後部をデータから直接推測する新しいベイズ非パラメトリックモデルを提案する。
ベクトル場後部を表すために,分離された関数型サンプリングを用いてスパース変分推論を導出する。
この手法はベクトル場後部演算の利点を示し、予測不確実性スコアは複数のODE学習タスクにおける代替手法よりも優れている。
論文 参考訳(メタデータ) (2021-06-21T08:09:17Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
本稿では、この局所最適問題を解くために、回転回帰のための離散連続的な新しい定式化を提案する。
我々はSO(3)の回転アンカーを均一にサンプリングし、各アンカーから目標への制約付き偏差を予測し、最適な予測を選択するための不確実性スコアを出力する。
LINEMOD と YCB-Video の2つのベンチマーク実験により,提案手法が最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2020-02-29T06:24:55Z) - Statistical Outlier Identification in Multi-robot Visual SLAM using
Expectation Maximization [18.259478519717426]
本稿では、同時局所化およびマッピング(SLAM)におけるマップ間ループ閉包外乱検出のための、新しい分散手法を提案する。
提案アルゴリズムは優れた初期化に頼らず、一度に2つ以上のマップを処理できる。
論文 参考訳(メタデータ) (2020-02-07T06:34:44Z) - Optimal Iterative Sketching with the Subsampled Randomized Hadamard
Transform [64.90148466525754]
最小二乗問題に対する反復スケッチの性能について検討する。
本研究では、Haar行列とランダム化されたHadamard行列の収束速度が同一であることを示し、ランダムなプロジェクションを経時的に改善することを示した。
これらの手法は、ランダム化次元還元を用いた他のアルゴリズムにも適用することができる。
論文 参考訳(メタデータ) (2020-02-03T16:17:50Z) - Analysis of Bayesian Inference Algorithms by the Dynamical Functional
Approach [2.8021833233819486]
学生自明なシナリオにおいて,大ガウス潜在変数モデルを用いて近似推論のアルゴリズムを解析する。
完全データモデルマッチングの場合、レプリカ法から派生した静的順序パラメータの知識により、効率的なアルゴリズム更新が得られる。
論文 参考訳(メタデータ) (2020-01-14T17:22:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。