Boosting High-Level Vision with Joint Compression Artifacts Reduction
and Super-Resolution
- URL: http://arxiv.org/abs/2010.08919v2
- Date: Fri, 18 Dec 2020 03:26:40 GMT
- Title: Boosting High-Level Vision with Joint Compression Artifacts Reduction
and Super-Resolution
- Authors: Xiaoyu Xiang, Qian Lin, Jan P. Allebach
- Abstract summary: We generate an artifact-free high-resolution image from a low-resolution one compressed with an arbitrary quality factor.
A context-aware joint CAR and SR neural network (CAJNN) integrates both local and non-local features to solve CAR and SR in one-stage.
A deep reconstruction network is adopted to predict high quality and high-resolution images.
- Score: 10.960291115491504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the limits of bandwidth and storage space, digital images are usually
down-scaled and compressed when transmitted over networks, resulting in loss of
details and jarring artifacts that can lower the performance of high-level
visual tasks. In this paper, we aim to generate an artifact-free
high-resolution image from a low-resolution one compressed with an arbitrary
quality factor by exploring joint compression artifacts reduction (CAR) and
super-resolution (SR) tasks. First, we propose a context-aware joint CAR and SR
neural network (CAJNN) that integrates both local and non-local features to
solve CAR and SR in one-stage. Finally, a deep reconstruction network is
adopted to predict high quality and high-resolution images. Evaluation on CAR
and SR benchmark datasets shows that our CAJNN model outperforms previous
methods and also takes 26.2% shorter runtime. Based on this model, we explore
addressing two critical challenges in high-level computer vision: optical
character recognition of low-resolution texts, and extremely tiny face
detection. We demonstrate that CAJNN can serve as an effective image
preprocessing method and improve the accuracy for real-scene text recognition
(from 85.30% to 85.75%) and the average precision for tiny face detection (from
0.317 to 0.611).
Related papers
- Assessing UHD Image Quality from Aesthetics, Distortions, and Saliency [51.36674160287799]
We design a multi-branch deep neural network (DNN) to assess the quality of UHD images from three perspectives.
aesthetic features are extracted from low-resolution images downsampled from the UHD ones.
Technical distortions are measured using a fragment image composed of mini-patches cropped from UHD images.
The salient content of UHD images is detected and cropped to extract quality-aware features from the salient regions.
arXiv Detail & Related papers (2024-09-01T15:26:11Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - High Quality Segmentation for Ultra High-resolution Images [72.97958314291648]
We propose the Continuous Refinement Model for the ultra high-resolution segmentation refinement task.
Our proposed method is fast and effective on image segmentation refinement.
arXiv Detail & Related papers (2021-11-29T11:53:06Z) - Disentangled High Quality Salient Object Detection [8.416690566816305]
We propose a novel deep learning framework for high-resolution salient object detection (SOD)
It disentangles the task into a low-resolution saliency classification network (LRSCN) and a high-resolution refinement network (HRRN)
arXiv Detail & Related papers (2021-08-08T02:14:15Z) - Learning-Based Quality Assessment for Image Super-Resolution [25.76907513611358]
We build a large-scale SR image database using a novel semi-automatic labeling approach.
The resulting SR Image quality database contains 8,400 images of 100 natural scenes.
We train an end-to-end Deep Image SR Quality (DISQ) model by employing two-stream Deep Neural Networks (DNNs) for feature extraction, followed by a feature fusion network for quality prediction.
arXiv Detail & Related papers (2020-12-16T04:06:27Z) - Multi Scale Identity-Preserving Image-to-Image Translation Network for
Low-Resolution Face Recognition [7.6702700993064115]
We propose an identity-preserving end-to-end image-to-image translation deep neural network.
It is capable of super-resolving very low-resolution faces to their high-resolution counterparts while preserving identity-related information.
arXiv Detail & Related papers (2020-10-23T09:21:06Z) - High Quality Remote Sensing Image Super-Resolution Using Deep Memory
Connected Network [21.977093907114217]
Single image super-resolution is crucial for many applications such as target detection and image classification.
We propose a novel method named deep memory connected network (DMCN) based on a convolutional neural network to reconstruct high-quality super-resolution images.
arXiv Detail & Related papers (2020-10-01T15:06:02Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
Cross-modality distribution of spatial and spectral information makes the problem challenging.
We propose a novel textitlightweight deep neural network-based framework, namely PZRes-Net.
Our framework learns a high resolution and textitzero-centric residual image, which contains high-frequency spatial details of the scene.
arXiv Detail & Related papers (2020-06-18T06:32:11Z) - Deep Attentive Generative Adversarial Network for Photo-Realistic Image
De-Quantization [25.805568996596783]
De-quantization can improve the visual quality of low bit-depth image to display on high bit-depth screen.
This paper proposes DAGAN algorithm to perform super-resolution on image intensity resolution.
DenseResAtt module consists of dense residual blocks armed with self-attention mechanism.
arXiv Detail & Related papers (2020-04-07T06:45:01Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.