Evidential Sparsification of Multimodal Latent Spaces in Conditional
Variational Autoencoders
- URL: http://arxiv.org/abs/2010.09164v3
- Date: Mon, 18 Jan 2021 18:34:32 GMT
- Title: Evidential Sparsification of Multimodal Latent Spaces in Conditional
Variational Autoencoders
- Authors: Masha Itkina, Boris Ivanovic, Ransalu Senanayake, Mykel J.
Kochenderfer, and Marco Pavone
- Abstract summary: We consider the problem of sparsifying the discrete latent space of a trained conditional variational autoencoder.
We use evidential theory to identify the latent classes that receive direct evidence from a particular input condition and filter out those that do not.
Experiments on diverse tasks, such as image generation and human behavior prediction, demonstrate the effectiveness of our proposed technique.
- Score: 63.46738617561255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discrete latent spaces in variational autoencoders have been shown to
effectively capture the data distribution for many real-world problems such as
natural language understanding, human intent prediction, and visual scene
representation. However, discrete latent spaces need to be sufficiently large
to capture the complexities of real-world data, rendering downstream tasks
computationally challenging. For instance, performing motion planning in a
high-dimensional latent representation of the environment could be intractable.
We consider the problem of sparsifying the discrete latent space of a trained
conditional variational autoencoder, while preserving its learned
multimodality. As a post hoc latent space reduction technique, we use
evidential theory to identify the latent classes that receive direct evidence
from a particular input condition and filter out those that do not. Experiments
on diverse tasks, such as image generation and human behavior prediction,
demonstrate the effectiveness of our proposed technique at reducing the
discrete latent sample space size of a model while maintaining its learned
multimodality.
Related papers
- Adaptive Learning of the Latent Space of Wasserstein Generative Adversarial Networks [7.958528596692594]
We propose a novel framework called the latent Wasserstein GAN (LWGAN)
It fuses the Wasserstein auto-encoder and the Wasserstein GAN so that the intrinsic dimension of the data manifold can be adaptively learned.
We show that LWGAN is able to identify the correct intrinsic dimension under several scenarios.
arXiv Detail & Related papers (2024-09-27T01:25:22Z) - Learning Sparsity of Representations with Discrete Latent Variables [15.05207849434673]
We propose a sparse deep latent generative model SDLGM to explicitly model degree of sparsity.
The resulting sparsity of a representation is not fixed, but fits to the observation itself under the pre-defined restriction.
For inference and learning, we develop an amortized variational method based on MC gradient estimator.
arXiv Detail & Related papers (2023-04-03T12:47:18Z) - Progressive Multi-view Human Mesh Recovery with Self-Supervision [68.60019434498703]
Existing solutions typically suffer from poor generalization performance to new settings.
We propose a novel simulation-based training pipeline for multi-view human mesh recovery.
arXiv Detail & Related papers (2022-12-10T06:28:29Z) - Disentangling Variational Autoencoders [0.0]
A variational autoencoder (VAE) projects an input set of high-dimensional data to a lower-dimensional, latent space.
We implement three different VAE models from the literature and train them on a dataset of 60,000 images of hand-written digits.
We investigate the trade-offs between the quality of the reconstruction of the decoded images and the level of disentanglement of the latent space.
arXiv Detail & Related papers (2022-11-14T19:22:41Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
We propose a novel approach to identify meaningful and independent factors of variation in a dataset.
Our method involves two separate latent subspaces for the target property and the remaining input information.
We demonstrate on synthetic and molecular data that our approach identifies more meaningful factors which lead to sparser and more interpretable models.
arXiv Detail & Related papers (2021-11-25T17:33:12Z) - Smoothing the Generative Latent Space with Mixup-based Distance Learning [32.838539968751924]
We consider the situation where neither large scale dataset of our interest nor transferable source dataset is available.
We propose latent mixup-based distance regularization on the feature space of both a generator and the counterpart discriminator.
arXiv Detail & Related papers (2021-11-23T06:39:50Z) - Discrete Auto-regressive Variational Attention Models for Text Modeling [53.38382932162732]
Variational autoencoders (VAEs) have been widely applied for text modeling.
They are troubled by two challenges: information underrepresentation and posterior collapse.
We propose Discrete Auto-regressive Variational Attention Model (DAVAM) to address the challenges.
arXiv Detail & Related papers (2021-06-16T06:36:26Z) - Where and What? Examining Interpretable Disentangled Representations [96.32813624341833]
Capturing interpretable variations has long been one of the goals in disentanglement learning.
Unlike the independence assumption, interpretability has rarely been exploited to encourage disentanglement in the unsupervised setting.
In this paper, we examine the interpretability of disentangled representations by investigating two questions: where to be interpreted and what to be interpreted.
arXiv Detail & Related papers (2021-04-07T11:22:02Z) - Modal Uncertainty Estimation via Discrete Latent Representation [4.246061945756033]
We introduce a deep learning framework that learns the one-to-many mappings between the inputs and outputs, together with faithful uncertainty measures.
Our framework demonstrates significantly more accurate uncertainty estimation than the current state-of-the-art methods.
arXiv Detail & Related papers (2020-07-25T05:29:34Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.