Improving cold-atom sensors with quantum entanglement: Prospects and
challenges
- URL: http://arxiv.org/abs/2010.09168v3
- Date: Sun, 11 Apr 2021 02:06:29 GMT
- Title: Improving cold-atom sensors with quantum entanglement: Prospects and
challenges
- Authors: Stuart S. Szigeti and Onur Hosten and Simon A. Haine
- Abstract summary: This Perspective piece asks the question: can entanglement usefully improve cold-atom sensors?
We briefly review the state-of-the-art in precision cold-atom sensing, focussing on clocks and inertial sensors.
We identify the potential benefits entanglement could bring to these devices, and the challenges that need to be overcome to realize these benefits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum entanglement has been generated and verified in cold-atom experiments
and used to make atom-interferometric measurements below the shot-noise limit.
However, current state-of-the-art cold-atom devices exploit separable (i.e.
unentangled) atomic states. This Perspective piece asks the question: can
entanglement usefully improve cold-atom sensors, in the sense that it gives new
sensing capabilities unachievable with current state-of-the-art devices? We
briefly review the state-of-the-art in precision cold-atom sensing, focussing
on clocks and inertial sensors, identifying the potential benefits entanglement
could bring to these devices, and the challenges that need to be overcome to
realize these benefits. We survey demonstrated methods of generating
metrologically-useful entanglement in cold-atom systems, note their relative
strengths and weaknesses, and assess their prospects for near-to-medium term
quantum-enhanced cold-atom sensing.
Related papers
- Near-field Strong Coupling and Entanglement of Quantum Emitters for Room-temperature Quantum Technologies [0.0]
We highlight a number of recent studies that reveal the especially compelling potential of nanoplasmonic cavity quantum electrodynamics.
Our perspective encompasses innovative proposals for quantum plasmonic biosensing, driving ultrafast single-photon emission and achieving near-field multipartite entanglement.
We conclude with an outlook emphasizing how the bespoke characteristics and functionalities of plasmonic devices are shaping contemporary research directives in ultrafast and room-temperature quantum nanotechnologies.
arXiv Detail & Related papers (2024-06-21T14:18:57Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Skyrmion Qubits: Challenges For Future Quantum Computing Applications [0.0]
Magnetic nano-skyrmions develop quantized helicity excitations.
Quantum tunneling between nano-skyrmions possessing distinct helicities is indicative of the quantum nature of these particles.
This Perspective aims to discuss developments and challenges in this new research avenue in quantum magnetism and quantum information.
arXiv Detail & Related papers (2024-01-08T09:51:14Z) - Subradiant entanglement in plasmonic nanocavities [0.0]
Plasmonic nanocavities form sub-radiant entangled states between two or more quantum emitters.
This work paves the way towards engineering quantum entangled states in ambient conditions with plasmonic nanocavities.
arXiv Detail & Related papers (2023-10-10T09:36:14Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Ultra-High Q Nanomechanical Resonators for Force Sensing [91.3755431537592]
I propose that such resonators will allow the detection of electron and nuclear spins with high spatial resolution.
The article lists the challenges that must be overcome before this vision can become reality, and indicates potential solutions.
arXiv Detail & Related papers (2022-09-12T12:21:00Z) - Exploration of doped quantum magnets with ultracold atoms [0.0]
We review the results achieved in cold atom realizations of the Fermi-Hubbard model in recent years.
We propose a new direction for cold atoms to explore: namely mixed-dimensional bilayer systems.
arXiv Detail & Related papers (2021-07-16T17:59:59Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - A Chirality-Based Quantum Leap [46.53135635900099]
Chiral degrees of freedom occur in matter and in electromagnetic fields.
Recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials.
arXiv Detail & Related papers (2020-08-31T22:47:39Z) - Precision measurements with cold atoms and trapped ions [16.530085733940528]
Recent progresses on quantum control of cold atoms and trapped ions greatly advance the applications in precision measurement.
Thanks to the exceptional controllability and versatility of these massive quantum systems, unprecedented sensitivity has been achieved in clocks, magnetometers and interferometers based on cold atoms and ions.
arXiv Detail & Related papers (2020-07-17T15:43:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.