Perspective: Practical Atom-Based Quantum Sensors
- URL: http://arxiv.org/abs/2507.13111v1
- Date: Thu, 17 Jul 2025 13:26:08 GMT
- Title: Perspective: Practical Atom-Based Quantum Sensors
- Authors: Justin M. Brown, Thad G. Walker,
- Abstract summary: Atoms are identical, isolatable, interfaceable, and intelligible.<n>Modern laser and electro-optic tools make atoms very attractive for sensing applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Atomic vapors, manipulated and probed by light and other electromagnetic fields, constitute versatile and powerful quantum systems for sensing applications. Atoms are identical, isolatable, interfaceable, and intelligible. These features, coupled with the relative simplicity with which quantum properties can be exploited in state preparation and detection using modern laser and electro-optic tools, make atoms very attractive for sensing applications. This Perspective discusses the potential and process for realizing practical quantum sensors using atoms.
Related papers
- Multi-Photon Quantum Rabi Models with Center-of-Mass Motion [45.73541813564926]
We introduce a rigorous, second-quantized framework for describing multi-$Lambda$-atoms in a cavity.<n>A key feature of our approach is the systematic application of a Hamiltonian averaging theory to the atomic field operators.<n>A significant finding is the emergence of a particle-particle interaction mediated by ancillary states.
arXiv Detail & Related papers (2025-07-07T09:50:48Z) - Quantum State Transfer in a Magnetic Atoms Chain Using a Scanning Tunneling Microscope [44.99833362998488]
The electric control of quantum spin chains has been an outstanding goal for the few last years due to its potential use in technologies related to quantum information processing.
We show the feasibility of the different steps necessary to perform controlled quantum state transfer in a $S=1/2$ titanium atoms chain employing the electric field produced by a Scanning Tunneling Microscope (STM)
arXiv Detail & Related papers (2024-08-13T14:45:46Z) - Laser-painted cavity-mediated interactions in a quantum gas [0.0]
Experimental platforms based on ultracold atomic gases have significantly advanced the quantum simulation of complex systems.
Here we propose an experimental scheme employing laser-painted cavity-mediated interactions.
Our approach combines the versatility of cavity quantum electrodynamics with the precision of laser manipulation.
arXiv Detail & Related papers (2024-05-13T06:13:16Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Taming Atomic Defects for Quantum Functions [0.0]
Single atoms provide an ideal system for utilizing fundamental quantum functions.
The counterpart of single atoms -- the single defects -- may be as good as atom-based quantum systems if not better.
We introduce some of our recent work on precisely controlled creation and manipulation of individual defects with a scanning tunneling microscope.
arXiv Detail & Related papers (2022-09-22T14:47:20Z) - Quantum electrodynamics of intense laser-matter interactions: A tool for
quantum state engineering [0.1465840097113565]
We provide a comprehensive fully quantized description of intense laser-atom interactions.
We elaborate on the processes of high harmonic generation, above-threshold-ionization.
We discuss new phenomena that cannot be revealed within the context of semi-classical theories.
arXiv Detail & Related papers (2022-06-09T07:07:30Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Quantum Sensors for High Precision Measurements of Spin-dependent
Interactions [47.187609203210705]
Experimental methods and technologies developed for quantum information science have rapidly advanced in recent years.
Spin-based quantum sensors can be used to search for myriad phenomena.
Spin-based quantum sensors offer a methodology for tests of fundamental physics that is complementary to particle colliders and large scale particle detectors.
arXiv Detail & Related papers (2022-03-17T17:36:48Z) - Design of Light-Matter Interactions for Quantum Technologies [0.0]
We design radiation patterns capable of creating effective light-matter interactions suited to applications in quantum computing, quantum simulation and quantum sensing.
On the one hand, we have used dynamical decoupling techniques to design quantum operations that are robust against errors in environmental and control fields.
On the other hand, we have studied generalised models of light-matter interaction, leading to the discovery of selective multi-photon interactions in the Rabi-Stark model.
arXiv Detail & Related papers (2021-01-27T21:30:36Z) - A Chirality-Based Quantum Leap [46.53135635900099]
Chiral degrees of freedom occur in matter and in electromagnetic fields.
Recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials.
arXiv Detail & Related papers (2020-08-31T22:47:39Z) - Roadmap on Atomtronics: State of the art and perspective [0.0]
Atomtronics deals with matter-wave circuits of ultra-cold atoms manipulated through magnetic or laser-generated guides.
New types of quantum networks can be constructed, in which coherent fluids are controlled.
We review some of the latest progresses achieved in matter-wave circuits design and atom-chips.
arXiv Detail & Related papers (2020-08-10T22:20:47Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.