論文の概要: DBA bandits: Self-driving index tuning under ad-hoc, analytical
workloads with safety guarantees
- arxiv url: http://arxiv.org/abs/2010.09208v2
- Date: Tue, 20 Oct 2020 03:38:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 23:10:12.937486
- Title: DBA bandits: Self-driving index tuning under ad-hoc, analytical
workloads with safety guarantees
- Title(参考訳): DBAの盗賊:安全保証付きアドホックな分析作業下での自動運転インデックスチューニング
- Authors: R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, Renata
Borovica-Gajic
- Abstract要約: 物理データベースの設計は、データベース研究に長く関心を寄せてきた。
クエリストアのような最近の進歩は、動的環境に対する限られたサポートしか提供しない。
本稿では,DBAとクエリオプティマイザを併用したオンラインインデックス選択に対する自律的アプローチを提案する。
- 参考スコア(独自算出の注目度): 14.913550078203448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automating physical database design has remained a long-term interest in
database research due to substantial performance gains afforded by optimised
structures. Despite significant progress, a majority of today's commercial
solutions are highly manual, requiring offline invocation by database
administrators (DBAs) who are expected to identify and supply representative
training workloads. Unfortunately, the latest advancements like query stores
provide only limited support for dynamic environments. This status quo is
untenable: identifying representative static workloads is no longer realistic;
and physical design tools remain susceptible to the query optimiser's cost
misestimates (stemming from unrealistic assumptions such as attribute value
independence and uniformity of data distribution). We propose a self-driving
approach to online index selection that eschews the DBA and query optimiser,
and instead learns the benefits of viable structures through strategic
exploration and direct performance observation. We view the problem as one of
sequential decision making under uncertainty, specifically within the bandit
learning setting. Multi-armed bandits balance exploration and exploitation to
provably guarantee average performance that converges to a fixed policy that is
optimal with perfect hindsight. Our comprehensive empirical results demonstrate
up to 75% speed-up on shifting and ad-hoc workloads and 28% speed-up on static
workloads compared against a state-of-the-art commercial tuning tool.
- Abstract(参考訳): 物理データベース設計の自動化は、最適化された構造によって得られる大幅な性能向上のために、データベース研究に長期的な関心が保たれている。
相当な進歩にもかかわらず、今日の商用ソリューションの大部分は極めて手作業で、代表的トレーニングワークロードの特定と提供を期待されているデータベース管理者(dbas)によるオフライン呼び出しを必要とする。
残念ながら、クエリストアのような最新の進歩は、動的環境に対する限定的なサポートしか提供しない。
一般的な静的ワークロードの識別はもはや現実的ではなく、物理設計ツールはクエリオプティマイザのコスト推定(属性値の独立性やデータ分散の均一性といった非現実的な前提から考える)の影響を受けやすいままである。
我々は,dbaやクエリオプティマイザを回避し,戦略的な探索と直接的パフォーマンス観察を通じて実現可能な構造のメリットを学習する,オンラインインデックス選択の自動運転手法を提案する。
我々は,この問題を不確実性下での逐次的意思決定の1つ,特にバンディット学習環境において捉えている。
マルチアームのバンディットは、完璧な後見で最適な固定されたポリシーに収束する平均的なパフォーマンスを保証するために、探索と搾取のバランスをとる。
当社の包括的な実証結果は、シフトおよびアドホックなワークロードの75%のスピードアップと、最先端の商用チューニングツールと比較して、静的ワークロードの28%のスピードアップを示しています。
関連論文リスト
- Adaptive Stream Processing on Edge Devices through Active Inference [5.5676731834895765]
アクティブ推論(AIF)に基づく新しい機械学習パラダイムを提案する。
AIFは、脳が長期的サプライズを減らすために感覚情報を常に予測し、評価する方法を記述している。
本手法は意思決定の完全透明性を保証し,結果の解釈とトラブルシューティングを無力化する。
論文 参考訳(メタデータ) (2024-09-26T15:12:41Z) - Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents [44.34340798542]
大きな言語モデル(LLM)は、複雑な推論を必要とする自然言語タスクにおいて顕著な能力を示している。
静的データセットに対する従来の教師付き事前トレーニングは、自律的なエージェント機能を実現するには不十分である。
本稿では,モンテカルロ木探索(MCTS)を自己批判機構と組み合わせ,エージェント間相互作用を反復的に微調整するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T20:52:13Z) - Towards General and Efficient Online Tuning for Spark [55.30868031221838]
本稿では,3つの問題を同時に処理できる汎用的で効率的なSparkチューニングフレームワークを提案する。
我々は、このフレームワークを独立したクラウドサービスとして実装し、Tencentのデータプラットフォームに適用しました。
論文 参考訳(メタデータ) (2023-09-05T02:16:45Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - A Meta Reinforcement Learning Approach for Predictive Autoscaling in the
Cloud [10.970391043991363]
本稿では,CPU利用の安定レベルを維持するために資源を最適に割り当てることを目的とした,エンドツーエンドのメタモデルに基づくRLアルゴリズムを提案する。
当社のアルゴリズムは,スケーリング戦略の予測可能性と精度を確保するだけでなく,スケーリング決定が変化するワークロードに高いサンプル効率で適応できるようにする。
論文 参考訳(メタデータ) (2022-05-31T13:54:04Z) - Reinforcement Learning in the Wild: Scalable RL Dispatching Algorithm
Deployed in Ridehailing Marketplace [12.298997392937876]
本研究では,強化学習に基づくリアルタイムディスパッチアルゴリズムを提案する。
ディディのA/Bテストの運営下にある複数の都市でオンラインに展開され、主要な国際市場の一つで展開されている。
デプロイされたアルゴリズムは、A/Bテストによるドライバーの総収入を1.3%以上改善している。
論文 参考訳(メタデータ) (2022-02-10T16:07:17Z) - On Effective Scheduling of Model-based Reinforcement Learning [53.027698625496015]
実データ比率を自動的にスケジュールするAutoMBPOというフレームワークを提案する。
本稿ではまず,政策訓練における実データの役割を理論的に分析し,実際のデータの比率を徐々に高めれば,より優れた性能が得られることを示唆する。
論文 参考訳(メタデータ) (2021-11-16T15:24:59Z) - No DBA? No regret! Multi-armed bandits for index tuning of analytical
and HTAP workloads with provable guarantees [9.965853054511163]
本稿では,DBAとクエリオプティマイザを併用したオンラインインデックス選択に対する自律的アプローチを提案する。
我々はその問題を不確実性の下でのシーケンシャルな意思決定の1つと見なしている。
当社のソリューションでは、シフトのスピードアップを最大59%、静的ワークロードのスピードアップを最大51%提供しています。
論文 参考訳(メタデータ) (2021-08-23T12:54:48Z) - MUSBO: Model-based Uncertainty Regularized and Sample Efficient Batch
Optimization for Deployment Constrained Reinforcement Learning [108.79676336281211]
データ収集とオンライン学習のための新しいポリシーの継続的展開はコスト非効率か非現実的かのどちらかである。
モデルベース不確実性正規化とサンプル効率的なバッチ最適化という新しいアルゴリズム学習フレームワークを提案する。
本フレームワークは,各デプロイメントの新規で高品質なサンプルを発見し,効率的なデータ収集を実現する。
論文 参考訳(メタデータ) (2021-02-23T01:30:55Z) - DADA: Differentiable Automatic Data Augmentation [58.560309490774976]
コストを大幅に削減する微分可能自動データ拡張(DADA)を提案する。
CIFAR-10, CIFAR-100, SVHN, ImageNetのデータセットについて広範な実験を行った。
その結果,DADAは最先端技術よりも1桁以上高速であり,精度は極めて高いことがわかった。
論文 参考訳(メタデータ) (2020-03-08T13:23:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。