論文の概要: Adaptive Stream Processing on Edge Devices through Active Inference
- arxiv url: http://arxiv.org/abs/2409.17937v1
- Date: Thu, 26 Sep 2024 15:12:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 16:52:13.060493
- Title: Adaptive Stream Processing on Edge Devices through Active Inference
- Title(参考訳): アクティブ推論によるエッジデバイス上の適応ストリーム処理
- Authors: Boris Sedlak, Victor Casamayor Pujol, Andrea Morichetta, Praveen Kumar Donta, Schahram Dustdar,
- Abstract要約: アクティブ推論(AIF)に基づく新しい機械学習パラダイムを提案する。
AIFは、脳が長期的サプライズを減らすために感覚情報を常に予測し、評価する方法を記述している。
本手法は意思決定の完全透明性を保証し,結果の解釈とトラブルシューティングを無力化する。
- 参考スコア(独自算出の注目度): 5.5676731834895765
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The current scenario of IoT is witnessing a constant increase on the volume of data, which is generated in constant stream, calling for novel architectural and logical solutions for processing it. Moving the data handling towards the edge of the computing spectrum guarantees better distribution of load and, in principle, lower latency and better privacy. However, managing such a structure is complex, especially when requirements, also referred to Service Level Objectives (SLOs), specified by applications' owners and infrastructure managers need to be ensured. Despite the rich number of proposals of Machine Learning (ML) based management solutions, researchers and practitioners yet struggle to guarantee long-term prediction and control, and accurate troubleshooting. Therefore, we present a novel ML paradigm based on Active Inference (AIF) -- a concept from neuroscience that describes how the brain constantly predicts and evaluates sensory information to decrease long-term surprise. We implement it and evaluate it in a heterogeneous real stream processing use case, where an AIF-based agent continuously optimizes the fulfillment of three SLOs for three autonomous driving services running on multiple devices. The agent used causal knowledge to gradually develop an understanding of how its actions are related to requirements fulfillment, and which configurations to favor. Through this approach, our agent requires up to thirty iterations to converge to the optimal solution, showing the capability of offering accurate results in a short amount of time. Furthermore, thanks to AIF and its causal structures, our method guarantees full transparency on the decision making, making the interpretation of the results and the troubleshooting effortless.
- Abstract(参考訳): IoTの現在のシナリオは、データボリュームが一定に増加し、一定のストリームで生成されるのを目撃し、それを処理するための新しいアーキテクチャと論理的なソリューションを要求している。
データ処理をコンピューティングスペクトルのエッジに移動することで、ロードの分散性が向上し、原則としてレイテンシが低く、プライバシも向上する。
しかしながら、このような構造を管理するのは複雑で、特にアプリケーションオーナーやインフラストラクチャマネージャが指定するサービスレベルオブジェクト(SLO)と呼ばれる要件を確実にする必要がある場合である。
機械学習(ML)ベースのマネジメントソリューションの提案が豊富にあるにも関わらず、研究者や実践者は、長期的な予測と制御、正確なトラブルシューティングの保証に苦慮している。
そこで我々は,脳が知覚情報を常に予測し,評価し,長期的驚きを減らそうとする,神経科学のコンセプトである,アクティブ推論(AIF)に基づく新しいMLパラダイムを提案する。
AIFをベースとしたエージェントが、複数のデバイス上で動作する3つの自動運転サービスに対して、3つのSLOの実現を継続的に最適化する、異種実ストリーム処理ユースケースで実装し、評価する。
エージェントは因果的知識を使用して、その行動が要求達成とどのように関係しているか、どの構成が好まれるかを徐々に理解した。
このアプローチを通じて、我々のエージェントは、最適解に収束するために最大30回のイテレーションを必要とし、短時間で正確な結果を提供する能力を示す。
さらに,AIFとその因果構造のおかげで,意思決定に対する完全な透明性が保証され,結果の解釈やトラブルシューティングの手間がかからない。
関連論文リスト
- Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
化学・プロセス産業では、プロセス・フロー・ダイアグラム(PFD)とパイプ・アンド・インスツルメンテーション・ダイアグラム(P&ID)が設計、建設、保守に不可欠である。
生成型AIの最近の進歩は、ビジュアル質問回答(VQA)のプロセス図の理解と解釈の約束を示している。
本稿では,階層的かつマルチエージェントなRetrieval Augmented Generation(RAG)フレームワークを用いた,セキュアでオンプレミスなエンタープライズソリューションを提案する。
論文 参考訳(メタデータ) (2024-08-24T19:34:04Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Age-Based Scheduling for Mobile Edge Computing: A Deep Reinforcement
Learning Approach [58.911515417156174]
我々は情報時代(AoI)の新たな定義を提案し、再定義されたAoIに基づいて、MECシステムにおけるオンラインAoI問題を定式化する。
本稿では,システム力学の部分的知識を活用するために,PDS(Post-Decision State)を導入する。
また、PSDと深いRLを組み合わせることで、アルゴリズムの適用性、スケーラビリティ、堅牢性をさらに向上します。
論文 参考訳(メタデータ) (2023-12-01T01:30:49Z) - Active Inference on the Edge: A Design Study [5.815300670677979]
アクティブ推論(アクティブ推論、英: Active Inference、ACI)とは、脳が知覚情報を常に予測し評価し、長期的サプライズを減らす方法を記述する神経科学の概念である。
我々は,ACIエージェントが要求を満たすことなく,最適化問題を迅速かつ追跡的に解決できたことを示す。
論文 参考訳(メタデータ) (2023-11-17T16:03:04Z) - Intelligent Proactive Fault Tolerance at the Edge through Resource Usage
Prediction [0.7046417074932255]
リカレントニューラルネットワーク(RNN)を用いたエッジリソース利用予測を利用した知的能動的フォールトトレランス(IPFT)手法を提案する。
本稿では,処理能力の欠如により許容範囲で品質・オブ・サービス(QoS)を提供するインフラの欠如に関連するプロセスフォールトに着目した。
論文 参考訳(メタデータ) (2023-02-09T00:42:34Z) - Multi-Agent Reinforcement Learning for Long-Term Network Resource
Allocation through Auction: a V2X Application [7.326507804995567]
我々は,自律エージェント間の分散意思決定として,移動エージェントの動的グループ(自動車など)からの計算タスクのオフロードを定式化する。
我々は、競争と協力のバランスをとることで、そのようなエージェントにプライベートとシステム目標の整合を動機付けるインタラクションメカニズムを設計する。
本稿では,部分的,遅延,ノイズの多い状態情報を用いて学習する,新しいマルチエージェントオンライン学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-29T10:29:06Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
本稿では,AIモデルの分割推論と統合センシング通信(ISAC)を併用した,新しいマルチインテリジェントエッジ人工レイテンシ(AI)システムについて検討する。
推定精度は近似的だが抽出可能な計量、すなわち判別利得を用いて測定する。
論文 参考訳(メタデータ) (2022-07-03T06:57:07Z) - On Efficient Uncertainty Estimation for Resource-Constrained Mobile
Applications [0.0]
予測の不確実性は、モデル予測を補完し、下流タスクの機能を改善します。
Axolotlフレームワークを用いてモンテカルロ・ドロップアウト(MCDO)モデルを構築することでこの問題に対処する。
我々は,(1)CIFAR10データセットを用いた多クラス分類タスク,(2)より複雑な人体セグメンテーションタスクについて実験を行った。
論文 参考訳(メタデータ) (2021-11-11T22:24:15Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。