論文の概要: Statistical guarantees for generative models without domination
- arxiv url: http://arxiv.org/abs/2010.09237v1
- Date: Mon, 19 Oct 2020 06:09:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 23:10:51.112030
- Title: Statistical guarantees for generative models without domination
- Title(参考訳): 支配のない生成モデルの統計的保証
- Authors: Nicolas Schreuder and Victor-Emmanuel Brunel and Arnak Dalalyan
- Abstract要約: 統計的視点から(逆)生成モデルを研究するための便利なフレームワークを提案する。
生成デバイスを、周囲空間のそれよりもはるかに小さい次元の単位ハイパーキューブの滑らかな変換としてモデル化する。
その結果,次元減少が生成モデルの誤差に与える影響が明らかとなった。
- 参考スコア(独自算出の注目度): 8.347058637480508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a convenient framework for studying (adversarial)
generative models from a statistical perspective. It consists in modeling the
generative device as a smooth transformation of the unit hypercube of a
dimension that is much smaller than that of the ambient space and measuring the
quality of the generative model by means of an integral probability metric. In
the particular case of integral probability metric defined through a smoothness
class, we establish a risk bound quantifying the role of various parameters. In
particular, it clearly shows the impact of dimension reduction on the error of
the generative model.
- Abstract(参考訳): 本稿では,統計的観点から(逆)生成モデルを研究するための便利な枠組みを提案する。
生成装置を、周囲の空間よりもはるかに小さい次元の単位超キューブの滑らかな変換としてモデル化し、積分確率計量を用いて生成モデルの品質を測定する。
滑らか度クラスで定義される積分確率計量の特定の場合、様々なパラメータの役割を定量化するリスクを確立する。
特に,次元減少が生成モデルの誤差に与える影響を明らかにした。
関連論文リスト
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
サロゲートモデルは複雑な計算モデルに対して素早く評価できる近似を提供する。
入力の不確かさと次元減少を伴う統計的代理を構築するためのベイズ推定について考察する。
コスト関数がモデル出力の平均および標準偏差の重み付け和に依存するような本質的で頑健な構造最適化問題を示す。
論文 参考訳(メタデータ) (2024-04-23T09:22:35Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
パラメータ行列を圧縮する手法として,データフリーなジョイントランクk近似を提案する。
キャリブレーションデータなしで、元の性能の93.43%を維持しながら80%のパラメータのモデルプルーニングを実現する。
論文 参考訳(メタデータ) (2024-02-26T05:51:47Z) - Variational autoencoder with weighted samples for high-dimensional
non-parametric adaptive importance sampling [0.0]
既存のフレームワークを、新しい目的関数を導入することで、重み付けされたサンプルの場合に拡張する。
モデルに柔軟性を加え、マルチモーダル分布を学習できるようにするため、学習可能な事前分布を考える。
提案手法は,既存の適応的重要度サンプリングアルゴリズムを用いて,目標分布から点を抽出し,高次元で稀な事象確率を推定する。
論文 参考訳(メタデータ) (2023-10-13T15:40:55Z) - The Interpolating Information Criterion for Overparameterized Models [49.283527214211446]
補間情報基準(Interpolating Information Criterion)は,モデル選択に事前選択を自然に取り入れたモデル品質の尺度であることを示す。
我々の新しい情報基準は、モデルの事前の誤特定、幾何学的およびスペクトル的特性を考慮に入れており、既知の経験的および理論的挙動と数値的に一致している。
論文 参考訳(メタデータ) (2023-07-15T12:09:54Z) - Distributional Learning of Variational AutoEncoder: Application to
Synthetic Data Generation [0.7614628596146602]
本稿では,VAEフレームワークの計算上の利点を犠牲にすることなく,モデル容量を拡大する手法を提案する。
VAEモデルのデコーダは、非対称ラプラス分布の無限混合からなる。
提案したモデルを合成データ生成に適用し,特にデータプライバシの調整が容易であることを示す。
論文 参考訳(メタデータ) (2023-02-22T11:26:50Z) - Divergence Frontiers for Generative Models: Sample Complexity,
Quantization Level, and Frontier Integral [58.434753643798224]
多様性フロンティアは生成モデルの評価フレームワークとして提案されている。
分岐フロンティアのプラグイン推定器のサンプル複雑性の非漸近的境界を確立する。
また,スムーズな分布推定器の統計的性能を調べることにより,分散フロンティアの枠組みも強化する。
論文 参考訳(メタデータ) (2021-06-15T06:26:25Z) - A likelihood approach to nonparametric estimation of a singular
distribution using deep generative models [4.329951775163721]
深部生成モデルを用いた特異分布の非パラメトリック推定の可能性について検討する。
我々は、インスタンスノイズでデータを摂動することで、新しい効果的な解が存在することを証明した。
また、より深い生成モデルにより効率的に推定できる分布のクラスを特徴付ける。
論文 参考訳(メタデータ) (2021-05-09T23:13:58Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
ドメインに依存しない方法で生成モデルの忠実度,多様性,一般化性能を特徴付ける3次元評価指標を提案する。
当社のメトリクスは、精度リコール分析により統計的発散測定を統合し、モデル忠実度と多様性のサンプルおよび分布レベルの診断を可能にします。
論文 参考訳(メタデータ) (2021-02-17T18:25:30Z) - On the minmax regret for statistical manifolds: the role of curvature [68.8204255655161]
2つの部分のコードと最小記述長は、最高のモデルを選別するための手順を提供するのに成功している。
我々は、フィッシャー情報計量のスカラー曲率が支配的な役割を果たす複雑さによって与えられる標準表現よりも、よりシャープな表現を導出する。
論文 参考訳(メタデータ) (2020-07-06T17:28:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。