論文の概要: Variational Bayesian surrogate modelling with application to robust design optimisation
- arxiv url: http://arxiv.org/abs/2404.14857v2
- Date: Fri, 11 Oct 2024 20:53:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 21:41:35.233366
- Title: Variational Bayesian surrogate modelling with application to robust design optimisation
- Title(参考訳): 変分ベイズ代理モデリングとロバスト設計最適化への応用
- Authors: Thomas A. Archbold, Ieva Kazlauskaite, Fehmi Cirak,
- Abstract要約: サロゲートモデルは複雑な計算モデルに対して素早く評価できる近似を提供する。
入力の不確かさと次元減少を伴う統計的代理を構築するためのベイズ推定について考察する。
コスト関数がモデル出力の平均および標準偏差の重み付け和に依存するような本質的で頑健な構造最適化問題を示す。
- 参考スコア(独自算出の注目度): 0.9626666671366836
- License:
- Abstract: Surrogate models provide a quick-to-evaluate approximation to complex computational models and are essential for multi-query problems like design optimisation. The inputs of current deterministic computational models are usually high-dimensional and uncertain. We consider Bayesian inference for constructing statistical surrogates with input uncertainties and intrinsic dimensionality reduction. The surrogate is trained by fitting to data obtained from a deterministic computational model. The assumed prior probability density of the surrogate is a Gaussian process. We determine the respective posterior probability density and parameters of the posited statistical model using variational Bayes. The non-Gaussian posterior is approximated by a Gaussian trial density with free variational parameters and the discrepancy between them is measured using the Kullback-Leibler (KL) divergence. We employ the stochastic gradient method to compute the variational parameters and other statistical model parameters by minimising the KL divergence. We demonstrate the accuracy and versatility of the proposed reduced dimension variational Gaussian process (RDVGP) surrogate on illustrative and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.
- Abstract(参考訳): サロゲートモデルは、複雑な計算モデルに対して素早く評価できる近似を提供し、設計最適化のようなマルチクエリー問題に必須である。
現在の決定論的計算モデルの入力は通常高次元かつ不確実である。
入力の不確かさと本質的な次元減少を伴う統計的代理を構築するためのベイズ推定について考察する。
シュロゲートは、決定論的計算モデルから得られたデータに適合して訓練される。
代理の仮定された事前確率密度はガウス過程である。
変分ベイズを用いた仮定統計モデルの各後続確率密度とパラメータを決定する。
非ガウス後部は自由変分パラメータを持つガウス公試密度で近似し、それらの差分をKL(Kulback-Leibler)偏差を用いて測定する。
KLの発散を最小化して変動パラメータや他の統計モデルパラメータを計算するために,確率勾配法を用いる。
本稿では,モデル出力の平均および標準偏差の重み付け和に依存するコスト関数の比例的かつロバストな構造最適化問題に対して,提案した縮小次元変分ガウス過程(RDVGP)の精度と汎用性を示す。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Convex Parameter Estimation of Perturbed Multivariate Generalized
Gaussian Distributions [18.95928707619676]
本稿では,MGGDパラメータの確立された特性を持つ凸定式化を提案する。
提案するフレームワークは, 精度行列, 平均, 摂動の様々な正規化を組み合わせ, 柔軟である。
実験により, 平均ベクトルパラメータに対して, 同様の性能でより正確な精度と共分散行列推定を行うことができた。
論文 参考訳(メタデータ) (2023-12-12T18:08:04Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
フル共分散構造を持つ変分混合は、パラメータ数による変動パラメータによる二次的な成長に苦しむ。
本稿では,変分推論のウォームスタートに使用できる初期ガウスモデル近似を構築する方法を提案する。
論文 参考訳(メタデータ) (2023-07-12T19:30:04Z) - Conditional Korhunen-Lo\'{e}ve regression model with Basis Adaptation
for high-dimensional problems: uncertainty quantification and inverse
modeling [62.997667081978825]
本稿では,物理系の観測可能な応答のサロゲートモデルの精度を向上させる手法を提案する。
本研究では,定常水理応答のBasis Adaptation (BA)法による代理モデル構築に提案手法を適用した。
論文 参考訳(メタデータ) (2023-07-05T18:14:38Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
複雑なモデルにおける変分推論(VI)の最適化アルゴリズムを提案する。
本研究では,変分行列上の正定値制約を満たすガウス変分推論の効率的なアルゴリズムを開発した。
MGVBPはブラックボックスの性質のため、複雑なモデルにおけるVIのための準備が整ったソリューションである。
論文 参考訳(メタデータ) (2022-10-26T10:12:31Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
誘導点に基づくスケーラブルスパース近似の数値安定性について検討する。
地理空間モデリングなどの低次元タスクに対しては,これらの条件を満たす点を自動計算する手法を提案する。
論文 参考訳(メタデータ) (2022-10-14T15:20:17Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
マルコフ連鎖モンテカルロのようなサンプリングに基づくアプローチの使用は、それぞれの可能性評価が計算的に高価であるときに難解になる可能性がある。
変分推論と正規化フローを組み合わせた新しいアプローチは、潜在変数空間の次元と線形にしか成長しない計算コストによって特徴づけられる。
本稿では,ニューラルネットワークサロゲートモデルの正規化フローパラメータと重みを代わりに更新する最適化戦略である,適応サロゲートを用いた正規化フロー(NoFAS)を提案する。
論文 参考訳(メタデータ) (2021-08-28T14:31:45Z) - Support estimation in high-dimensional heteroscedastic mean regression [2.28438857884398]
ランダムな設計と、潜在的にヘテロセダスティックで重み付きエラーを伴う線形平均回帰モデルを考える。
我々は,問題のパラメータに依存するチューニングパラメータを備えた,厳密な凸・滑らかなHuber損失関数の変種を用いる。
得られた推定器に対して、$ell_infty$ノルムにおける符号一貫性と最適収束率を示す。
論文 参考訳(メタデータ) (2020-11-03T09:46:31Z) - Variable selection for Gaussian process regression through a sparse
projection [0.802904964931021]
本稿では,ガウス過程(GP)レグレッションと統合された新しい変数選択手法を提案する。
パラメータの調整と推定の精度を,選択したベンチマーク手法を用いて評価した。
論文 参考訳(メタデータ) (2020-08-25T01:06:10Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
無限級数のランダム化トランケーションに基づく潜在変数モデルに対して、ログ境界確率の非バイアス推定器とその勾配を導入する。
推定器を用いてトレーニングしたモデルは、同じ平均計算コストに対して、標準的な重要度サンプリングに基づくアプローチよりも優れたテストセット確率を与えることを示す。
論文 参考訳(メタデータ) (2020-04-01T11:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。