論文の概要: Learning to solve TV regularized problems with unrolled algorithms
- arxiv url: http://arxiv.org/abs/2010.09545v1
- Date: Mon, 19 Oct 2020 14:19:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 22:53:10.943638
- Title: Learning to solve TV regularized problems with unrolled algorithms
- Title(参考訳): アンロールアルゴリズムによるテレビ正規化問題の解法
- Authors: Hamza Cherkaoui and Jeremias Sulam and Thomas Moreau
- Abstract要約: トータル・バージョニング(Total Variation、TV)は、一方向定値信号を促進する一般的な正規化戦略である。
そこで我々は,2つのアプローチを開発し,そのメリットと限界を記述し,反復的な手順よりも実際に改善できる体制について議論する。
- 参考スコア(独自算出の注目度): 18.241062505073234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Total Variation (TV) is a popular regularization strategy that promotes
piece-wise constant signals by constraining the $\ell_1$-norm of the first
order derivative of the estimated signal. The resulting optimization problem is
usually solved using iterative algorithms such as proximal gradient descent,
primal-dual algorithms or ADMM. However, such methods can require a very large
number of iterations to converge to a suitable solution. In this paper, we
accelerate such iterative algorithms by unfolding proximal gradient descent
solvers in order to learn their parameters for 1D TV regularized problems.
While this could be done using the synthesis formulation, we demonstrate that
this leads to slower performances. The main difficulty in applying such methods
in the analysis formulation lies in proposing a way to compute the derivatives
through the proximal operator. As our main contribution, we develop and
characterize two approaches to do so, describe their benefits and limitations,
and discuss the regime where they can actually improve over iterative
procedures. We validate those findings with experiments on synthetic and real
data.
- Abstract(参考訳): total variation (tv) は、推定された信号の1次微分の$\ell_1$-norm を制約することにより、断片的な定数信号を促進する一般的な正規化戦略である。
結果の最適化問題は、通常、近位勾配降下、原始双対アルゴリズム、ADMMなどの反復アルゴリズムを用いて解決される。
しかし、そのような方法は適切な解に収束するために非常に多くの反復を必要とする。
本稿では,1次元テレビ正則化問題のパラメータを学習するために,近位勾配降下ソルバを展開することにより,反復アルゴリズムを高速化する。
これは合成定式化を用いて行うことができるが、性能が遅くなることを示す。
このような手法を解析的定式化に適用することの最大の難点は、近位作用素を通じて微分を計算する方法を提案することである。
主な貢献として、我々は2つのアプローチを開発し、その利点と限界を説明し、反復的な手順よりも実際に改善できる体制について議論する。
これらを合成データと実データを用いて検証する。
関連論文リスト
- A Natural Primal-Dual Hybrid Gradient Method for Adversarial Neural Network Training on Solving Partial Differential Equations [9.588717577573684]
偏微分方程式(PDE)を解くためのスケーラブルな事前条件付き原始ハイブリッド勾配アルゴリズムを提案する。
本稿では,提案手法の性能を,一般的なディープラーニングアルゴリズムと比較する。
その結果,提案手法は効率的かつ堅牢に動作し,安定に収束することが示唆された。
論文 参考訳(メタデータ) (2024-11-09T20:39:10Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - Bolstering Stochastic Gradient Descent with Model Building [0.0]
勾配降下法とその変種は、優れた収束率を達成するためのコア最適化アルゴリズムを構成する。
本稿では,前方ステップモデル構築に基づく新しいアルゴリズムを用いて,線探索の代替手法を提案する。
提案アルゴリズムは、よく知られたテスト問題において、より高速な収束とより優れた一般化を実現する。
論文 参考訳(メタデータ) (2021-11-13T06:54:36Z) - A Two-Time-Scale Stochastic Optimization Framework with Applications in Control and Reinforcement Learning [13.908826484332282]
最適化問題の解法として,新しい2段階勾配法を提案する。
最初の貢献は、提案した2時間スケール勾配アルゴリズムの有限時間複雑性を特徴づけることである。
我々は、強化学習における勾配に基づく政策評価アルゴリズムに適用する。
論文 参考訳(メタデータ) (2021-09-29T23:15:23Z) - Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent [20.47598828422897]
第一次下降法における学習率の適応的選択のための新しいアプローチであるtextit-Meta-Regularizationを提案する。
本手法は,正規化項を追加して目的関数を修正し,共同処理パラメータをキャストする。
論文 参考訳(メタデータ) (2021-04-12T13:13:34Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - Stochastic Optimization for Regularized Wasserstein Estimators [10.194798773447879]
ワッサーシュタイン推定器勾配の正規化版を、自然次元のサブ線形なステップ毎の時間で解くアルゴリズムを導入する。
このアルゴリズムは他のタスクにも拡張可能であることを示し、その中にはWasserstein Barycentersの推定も含まれる。
論文 参考訳(メタデータ) (2020-02-20T12:04:05Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。