SPA: Stochastic Probability Adjustment for System Balance of
Unsupervised SNNs
- URL: http://arxiv.org/abs/2010.09690v2
- Date: Thu, 6 May 2021 07:53:42 GMT
- Title: SPA: Stochastic Probability Adjustment for System Balance of
Unsupervised SNNs
- Authors: Xingyu Yang, Mingyuan Meng, Shanlin Xiao, and Zhiyi Yu
- Abstract summary: Spiking neural networks (SNNs) receive widespread attention because of their low-power hardware characteristic and brain-like signal response mechanism.
We build an information theory-inspired system called Probability Adjustment (SPA) to reduce this gap.
The improvements in classification accuracy have reached 1.99% and 6.29% on the MNIST and EMNIST datasets respectively.
- Score: 2.729898906885749
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Spiking neural networks (SNNs) receive widespread attention because of their
low-power hardware characteristic and brain-like signal response mechanism, but
currently, the performance of SNNs is still behind Artificial Neural Networks
(ANNs). We build an information theory-inspired system called Stochastic
Probability Adjustment (SPA) system to reduce this gap. The SPA maps the
synapses and neurons of SNNs into a probability space where a neuron and all
connected pre-synapses are represented by a cluster. The movement of synaptic
transmitter between different clusters is modeled as a Brownian-like stochastic
process in which the transmitter distribution is adaptive at different firing
phases. We experimented with a wide range of existing unsupervised SNN
architectures and achieved consistent performance improvements. The
improvements in classification accuracy have reached 1.99% and 6.29% on the
MNIST and EMNIST datasets respectively.
Related papers
- Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - Fully Spiking Denoising Diffusion Implicit Models [61.32076130121347]
Spiking neural networks (SNNs) have garnered considerable attention owing to their ability to run on neuromorphic devices with super-high speeds.
We propose a novel approach fully spiking denoising diffusion implicit model (FSDDIM) to construct a diffusion model within SNNs.
We demonstrate that the proposed method outperforms the state-of-the-art fully spiking generative model.
arXiv Detail & Related papers (2023-12-04T09:07:09Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
It is hard to train biologically-inspired spiking neural networks (SNNs) than artificial neural networks (ANNs)
We show that training deep SNN models achieves the exact same performance as that of ANNs.
Our SNN accomplishes high-performance classification with less than 0.3 spikes per neuron, lending itself for an energy-efficient implementation.
arXiv Detail & Related papers (2023-06-14T21:01:35Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - STSC-SNN: Spatio-Temporal Synaptic Connection with Temporal Convolution
and Attention for Spiking Neural Networks [7.422913384086416]
Spiking Neural Networks (SNNs), as one of the algorithmic models in neuromorphic computing, have gained a great deal of research attention owing to temporal processing capability.
Existing synaptic structures in SNNs are almost full-connections or spatial 2D convolution, neither which can extract temporal dependencies adequately.
We take inspiration from biological synapses and propose a synaptic connection SNN model, to enhance the synapse-temporal receptive fields of synaptic connections.
We show that endowing synaptic models with temporal dependencies can improve the performance of SNNs on classification tasks.
arXiv Detail & Related papers (2022-10-11T08:13:22Z) - Heterogeneous Recurrent Spiking Neural Network for Spatio-Temporal
Classification [13.521272923545409]
Spi Neural Networks are often touted as brain-inspired learning models for the third wave of Artificial Intelligence.
This paper presents a heterogeneous spiking neural network (HRSNN) with unsupervised learning for video recognition tasks.
We show that HRSNN can achieve similar performance to state-of-the-temporal backpropagation trained supervised SNN, but with less computation.
arXiv Detail & Related papers (2022-09-22T16:34:01Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - BackEISNN: A Deep Spiking Neural Network with Adaptive Self-Feedback and
Balanced Excitatory-Inhibitory Neurons [8.956708722109415]
Spiking neural networks (SNNs) transmit information through discrete spikes, which performs well in processing spatial-temporal information.
We propose a deep spiking neural network with adaptive self-feedback and balanced excitatory and inhibitory neurons (BackEISNN)
For the MNIST, FashionMNIST, and N-MNIST datasets, our model has achieved state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T08:38:31Z) - Spatio-Temporal Neural Network for Fitting and Forecasting COVID-19 [1.1129587851149594]
We established a Spatio-Temporal Neural Network, namely STNN, to forecast the spread of the coronavirus COVID-19 outbreak worldwide in 2020.
Two improved STNN architectures, namely the STNN with Augmented Spatial States (STNN-A) and the STNN with Input Gate (STNN-I), are proposed.
Numerical simulations demonstrate that STNN models outperform many others by providing more accurate fitting and prediction, and by handling both spatial and temporal data.
arXiv Detail & Related papers (2021-03-22T13:59:14Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.