Exploring Simple 3D Multi-Object Tracking for Autonomous Driving
- URL: http://arxiv.org/abs/2108.10312v1
- Date: Mon, 23 Aug 2021 17:59:22 GMT
- Title: Exploring Simple 3D Multi-Object Tracking for Autonomous Driving
- Authors: Chenxu Luo, Xiaodong Yang, Alan Yuille
- Abstract summary: 3D multi-object tracking in LiDAR point clouds is a key ingredient for self-driving vehicles.
Existing methods are predominantly based on the tracking-by-detection pipeline and inevitably require a matching step for the detection association.
We present SimTrack to simplify the hand-crafted tracking paradigm by proposing an end-to-end trainable model for joint detection and tracking from raw point clouds.
- Score: 10.921208239968827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D multi-object tracking in LiDAR point clouds is a key ingredient for
self-driving vehicles. Existing methods are predominantly based on the
tracking-by-detection pipeline and inevitably require a heuristic matching step
for the detection association. In this paper, we present SimTrack to simplify
the hand-crafted tracking paradigm by proposing an end-to-end trainable model
for joint detection and tracking from raw point clouds. Our key design is to
predict the first-appear location of each object in a given snippet to get the
tracking identity and then update the location based on motion estimation. In
the inference, the heuristic matching step can be completely waived by a simple
read-off operation. SimTrack integrates the tracked object association, newborn
object detection, and dead track killing in a single unified model. We conduct
extensive evaluations on two large-scale datasets: nuScenes and Waymo Open
Dataset. Experimental results reveal that our simple approach compares
favorably with the state-of-the-art methods while ruling out the heuristic
matching rules.
Related papers
- SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - Once Detected, Never Lost: Surpassing Human Performance in Offline LiDAR
based 3D Object Detection [50.959453059206446]
This paper aims for high-performance offline LiDAR-based 3D object detection.
We first observe that experienced human annotators annotate objects from a track-centric perspective.
We propose a high-performance offline detector in a track-centric perspective instead of the conventional object-centric perspective.
arXiv Detail & Related papers (2023-04-24T17:59:05Z) - You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object Tracking [9.20064374262956]
The proposed framework can achieve robust tracking by using only a 2D detector and a 3D detector.
It is proven more accurate than many of the state-of-the-art TBD-based multi-modal tracking methods.
arXiv Detail & Related papers (2023-04-18T02:45:18Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - InterTrack: Interaction Transformer for 3D Multi-Object Tracking [9.283656931246645]
3D multi-object tracking (MOT) is a key problem for autonomous vehicles.
Our proposed solution, InterTrack, generates discriminative object representations for data association.
We validate our approach on the nuScenes 3D MOT benchmark, where we observe significant improvements.
arXiv Detail & Related papers (2022-08-17T03:24:36Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
We propose an efficient joint detection and tracking model named DEFT.
Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network.
DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards.
arXiv Detail & Related papers (2021-02-03T20:00:44Z) - Probabilistic 3D Multi-Modal, Multi-Object Tracking for Autonomous
Driving [22.693895321632507]
We propose a probabilistic, multi-modal, multi-object tracking system consisting of different trainable modules.
We show that our method outperforms current state-of-the-art on the NuScenes Tracking dataset.
arXiv Detail & Related papers (2020-12-26T15:00:54Z) - Tracking from Patterns: Learning Corresponding Patterns in Point Clouds
for 3D Object Tracking [34.40019455462043]
We propose to learn 3D object correspondences from temporal point cloud data and infer the motion information from correspondence patterns.
Our method exceeds the existing 3D tracking methods on both the KITTI and larger scale Nuscenes dataset.
arXiv Detail & Related papers (2020-10-20T06:07:20Z) - Chained-Tracker: Chaining Paired Attentive Regression Results for
End-to-End Joint Multiple-Object Detection and Tracking [102.31092931373232]
We propose a simple online model named Chained-Tracker (CTracker), which naturally integrates all the three subtasks into an end-to-end solution.
The two major novelties: chained structure and paired attentive regression, make CTracker simple, fast and effective.
arXiv Detail & Related papers (2020-07-29T02:38:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.