Feature Inference Attack on Model Predictions in Vertical Federated
Learning
- URL: http://arxiv.org/abs/2010.10152v3
- Date: Thu, 22 Apr 2021 11:44:35 GMT
- Title: Feature Inference Attack on Model Predictions in Vertical Federated
Learning
- Authors: Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, Beng Chin Ooi
- Abstract summary: Federated learning (FL) is an emerging paradigm for facilitating multiple organizations' data collaboration without revealing their private data to each other.
This paper presents several feature inference attack methods to investigate the potential privacy leakages in the model prediction stage of vertical FL.
- Score: 26.7517556631796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is an emerging paradigm for facilitating multiple
organizations' data collaboration without revealing their private data to each
other. Recently, vertical FL, where the participating organizations hold the
same set of samples but with disjoint features and only one organization owns
the labels, has received increased attention. This paper presents several
feature inference attack methods to investigate the potential privacy leakages
in the model prediction stage of vertical FL. The attack methods consider the
most stringent setting that the adversary controls only the trained vertical FL
model and the model predictions, relying on no background information. We first
propose two specific attacks on the logistic regression (LR) and decision tree
(DT) models, according to individual prediction output. We further design a
general attack method based on multiple prediction outputs accumulated by the
adversary to handle complex models, such as neural networks (NN) and random
forest (RF) models. Experimental evaluations demonstrate the effectiveness of
the proposed attacks and highlight the need for designing private mechanisms to
protect the prediction outputs in vertical FL.
Related papers
- Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Membership Inference Attacks on Diffusion Models via Quantile Regression [30.30033625685376]
We demonstrate a privacy vulnerability of diffusion models through amembership inference (MI) attack.
Our proposed MI attack learns quantile regression models that predict (a quantile of) the distribution of reconstruction loss on examples not used in training.
We show that our attack outperforms the prior state-of-the-art attack while being substantially less computationally expensive.
arXiv Detail & Related papers (2023-12-08T16:21:24Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
This paper proposes a data-agnostic, model poisoning attack on Federated Learning (FL)
The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability.
Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it.
arXiv Detail & Related papers (2023-11-30T12:19:10Z) - Mitigating Backdoors in Federated Learning with FLD [7.908496863030483]
Federated learning allows clients to collaboratively train a global model without uploading raw data for privacy preservation.
This feature has recently been found responsible for federated learning's vulnerability in the face of backdoor attacks.
We propose Federated Layer Detection (FLD), a novel model filtering approach for effectively defending against backdoor attacks.
arXiv Detail & Related papers (2023-03-01T07:54:54Z) - Robust Transferable Feature Extractors: Learning to Defend Pre-Trained
Networks Against White Box Adversaries [69.53730499849023]
We show that adversarial examples can be successfully transferred to another independently trained model to induce prediction errors.
We propose a deep learning-based pre-processing mechanism, which we refer to as a robust transferable feature extractor (RTFE)
arXiv Detail & Related papers (2022-09-14T21:09:34Z) - Defending against the Label-flipping Attack in Federated Learning [5.769445676575767]
Federated learning (FL) provides autonomy and privacy by design to participating peers.
The label-flipping (LF) attack is a targeted poisoning attack where the attackers poison their training data by flipping the labels of some examples.
We propose a novel defense that first dynamically extracts those gradients from the peers' local updates.
arXiv Detail & Related papers (2022-07-05T12:02:54Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
Federated learning (FL) enables learning a global machine learning model from local data distributed among a set of participating workers.
FL is vulnerable to targeted poisoning attacks that negatively impact the integrity of the learned model.
We propose textitFL-Defender as a method to combat FL targeted attacks.
arXiv Detail & Related papers (2022-07-02T16:04:46Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Adversarial Attack and Defense of Structured Prediction Models [58.49290114755019]
In this paper, we investigate attacks and defenses for structured prediction tasks in NLP.
The structured output of structured prediction models is sensitive to small perturbations in the input.
We propose a novel and unified framework that learns to attack a structured prediction model using a sequence-to-sequence model.
arXiv Detail & Related papers (2020-10-04T15:54:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.