Harnessing the Power of the Second Quantum Revolution
- URL: http://arxiv.org/abs/2010.10283v1
- Date: Tue, 20 Oct 2020 13:55:04 GMT
- Title: Harnessing the Power of the Second Quantum Revolution
- Authors: Ivan H. Deutsch
- Abstract summary: The quest for new knowledge and understanding drove the development of new experimental tools and rigorous theory.
As technology has matured, the race to develop and commercialize near-term applications has accelerated.
In this Perspective I review how curiosity-driven research led to radical new technologies and why the quest for basic understanding is essential for further progress.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The second quantum revolution has been built on a foundation of fundamental
research at the intersection of physics and information science, giving rise to
the discipline we now call Quantum Information Science (QIS). The quest for new
knowledge and understanding drove the development of new experimental tools and
rigorous theory, which defined the roadmap for second-wave quantum
technologies, including quantum computers, quantum-enhanced sensors, and
communication systems. As technology has matured, the race to develop and
commercialize near-term applications has accelerated. In the current regime of
Noisy Intermediate Scale Quantum (NISQ) devices, the continued necessity of
basic research is manifest. Under what conditions can we truly harness quantum
complexity and what are its implications for potential useful applications?
These questions remain largely unanswered, and as the QIS industry ramps up, a
continuous feedback between basic science and technology is essential. In this
Perspective I review how curiosity-driven research led to radical new
technologies and why the quest for basic understanding is essential for further
progress.
Related papers
- Atomic Quantum Technologies for Quantum Matter and Fundamental Physics Applications [0.0]
Physics is living an era of unprecedented cross-fertilization among the different areas of science.
We discuss the manifold impact that ultracold-atom quantum technologies can have in fundamental and applied science.
We illustrate how the engineering of table-top experiments with atom technologies is engendering applications.
arXiv Detail & Related papers (2024-05-10T16:52:20Z) - Quantum sensing with atomic, molecular, and optical platforms for fundamental physics [0.611309374994742]
We argue that a compelling long-term vision for fundamental physics and novel applications is to harness the rapid development of quantum information science.
We anticipate that some of the most intriguing and challenging problems, such as quantum aspects of gravity, fundamental symmetries, will be tackled at the emerging quantum measurement frontier.
arXiv Detail & Related papers (2024-05-07T20:56:20Z) - Quantum Computing: Vision and Challenges [16.50566018023275]
We discuss cutting-edge developments in quantum computer hardware advancement and subsequent advances in quantum cryptography, quantum software, and high-scalability quantum computers.
Many potential challenges and exciting new trends for quantum technology research and development are highlighted in this paper for a broader debate.
arXiv Detail & Related papers (2024-03-04T17:33:18Z) - On-Premises Superconducting Quantum Computer for Education and Research [0.0]
We introduce a commercially available on-site quantum computer utilizing superconducting technology.
We show how this system can be used in education to teach quantum concepts and deepen understanding of quantum theory and quantum computing.
arXiv Detail & Related papers (2024-02-11T22:05:45Z) - Towards Quantum-Native Communication Systems: New Developments, Trends,
and Challenges [63.67245855948243]
The survey examines technologies such as quantum-domain (QD) multi-input multi-output (MIMO), QD non-orthogonal multiple access (NOMA), quantum secure direct communication (QSDC)
The current status of quantum sensing, quantum radar, and quantum timing is briefly reviewed in support of future applications.
arXiv Detail & Related papers (2023-11-09T09:45:52Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Physics-Informed Quantum Communication Networks: A Vision Towards the
Quantum Internet [79.8886946157912]
We present a novel analysis of the performance of quantum communication networks (QCNs) in a physics-informed manner.
The need of the physics-informed approach is then assessed and its fundamental role in designing practical QCNs is analyzed.
We identify novel physics-informed performance metrics and controls that enable QCNs to leverage the state-of-the-art advancements in quantum technologies.
arXiv Detail & Related papers (2022-04-20T05:32:16Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.