Interpretable Deep Learning for Automatic Diagnosis of 12-lead
Electrocardiogram
- URL: http://arxiv.org/abs/2010.10328v1
- Date: Tue, 20 Oct 2020 14:51:00 GMT
- Title: Interpretable Deep Learning for Automatic Diagnosis of 12-lead
Electrocardiogram
- Authors: Dongdong Zhang, Xiaohui Yuan and Ping Zhang
- Abstract summary: We developed a deep neural network for multi-label classification of cardiac arrhythmias in 12-lead ECG recordings.
The proposed model achieved an average area under the receiver operating characteristic curve (AUC) of 0.970 and an average F1 score of 0.813.
The best-performing leads are lead I, aVR, and V5 among 12 leads.
- Score: 15.464768773761527
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Electrocardiogram (ECG) is a widely used reliable, non-invasive approach for
cardiovascular disease diagnosis. With the rapid growth of ECG examinations and
the insufficiency of cardiologists, accurate and automatic diagnosis of ECG
signals has become a hot research topic. Deep learning methods have
demonstrated promising results in predictive healthcare tasks. In this paper,
we developed a deep neural network for multi-label classification of cardiac
arrhythmias in 12-lead ECG recordings. Experiments on a public 12-lead ECG
dataset showed the effectiveness of our method. The proposed model achieved an
average area under the receiver operating characteristic curve (AUC) of 0.970
and an average F1 score of 0.813. The deep model showed superior performance
than 4 machine learning methods learned from extracted expert features.
Besides, the deep models trained on single-lead ECGs produce lower performance
than using all 12 leads simultaneously. The best-performing leads are lead I,
aVR, and V5 among 12 leads. Finally, we employed the SHapley Additive
exPlanations (SHAP) method to interpret the model's behavior at both patient
level and population level. Our code is freely available at
https://github.com/onlyzdd/ecg-diagnosis.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
We propose a disease-specific attention-based deep learning model (DANet) for arrhythmia detection from short ECG recordings.
The novel idea is to introduce a soft-coding or hard-coding waveform enhanced module into existing deep neural networks.
For the soft-coding DANet, we also develop a learning framework combining self-supervised pre-training with two-stage supervised training.
arXiv Detail & Related papers (2024-07-25T13:27:10Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Deep conv-attention model for diagnosing left bundle branch block from
12-lead electrocardiograms [5.156484100374058]
This study presents a deep learning model for the detection of LBBB arrhythmia from 12-lead ECG data.
The proposed model is trained and validated on a database containing 10344 12-lead ECG samples.
arXiv Detail & Related papers (2022-12-07T08:30:23Z) - Enhancing Deep Learning-based 3-lead ECG Classification with Heartbeat
Counting and Demographic Data Integration [0.0]
This article introduces two novel techniques to improve the performance of the current deep learning system for 3-lead ECG classification.
Specifically, we propose a multi-task learning scheme in the form of the number of heartbeats regression and an effective mechanism to integrate patient demographic data into the system.
With these two advancements, we got classification performance in terms of F1 scores of 0.9796 and 0.8140 on two large-scale ECG datasets.
arXiv Detail & Related papers (2022-08-15T09:33:36Z) - Identifying Electrocardiogram Abnormalities Using a
Handcrafted-Rule-Enhanced Neural Network [18.859487271034336]
We introduce some rules into convolutional neural networks, which help present clinical knowledge to deep learning based ECG analysis.
Our new approach considerably outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2022-06-16T04:42:57Z) - IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG
Classification [0.9449650062296824]
In clinical settings, a cardiologist makes a diagnosis based on the standard 12-channel ECG recording.
We propose a model that leverages the multiple-channel information available in the standard ECG recordings and learns patterns at the beat, rhythm, and channel level.
The experimental results show that our model achieved a macro-averaged ROC-AUC score of 0.9216, mean accuracy of 88.85%, and a maximum F1 score of 0.8057 on the PTB-XL dataset.
arXiv Detail & Related papers (2022-04-06T16:29:10Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
We build an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis.
For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal waveform.
We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class.
arXiv Detail & Related papers (2020-10-21T18:11:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.