Deep conv-attention model for diagnosing left bundle branch block from
12-lead electrocardiograms
- URL: http://arxiv.org/abs/2212.04936v2
- Date: Mon, 26 Jun 2023 07:17:29 GMT
- Title: Deep conv-attention model for diagnosing left bundle branch block from
12-lead electrocardiograms
- Authors: Alireza Sadeghi, Alireza Rezaee, Farshid Hajati
- Abstract summary: This study presents a deep learning model for the detection of LBBB arrhythmia from 12-lead ECG data.
The proposed model is trained and validated on a database containing 10344 12-lead ECG samples.
- Score: 5.156484100374058
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cardiac resynchronization therapy (CRT) is a treatment that is used to
compensate for irregularities in the heartbeat. Studies have shown that this
treatment is more effective in heart patients with left bundle branch block
(LBBB) arrhythmia. Therefore, identifying this arrhythmia is an important
initial step in determining whether or not to use CRT. On the other hand,
traditional methods for detecting LBBB on electrocardiograms (ECG) are often
associated with errors. Thus, there is a need for an accurate method to
diagnose this arrhythmia from ECG data. Machine learning, as a new field of
study, has helped to increase human systems' performance. Deep learning, as a
newer subfield of machine learning, has more power to analyze data and increase
systems accuracy. This study presents a deep learning model for the detection
of LBBB arrhythmia from 12-lead ECG data. This model consists of 1D dilated
convolutional layers. Attention mechanism has also been used to identify
important input data features and classify inputs more accurately. The proposed
model is trained and validated on a database containing 10344 12-lead ECG
samples using the 10-fold cross-validation method. The final results obtained
by the model on the 12-lead ECG data are as follows. Accuracy: 98.80+-0.08%,
specificity: 99.33+-0.11 %, F1 score: 73.97+-1.8%, and area under the receiver
operating characteristics curve (AUC): 0.875+-0.0192. These results indicate
that the proposed model in this study can effectively diagnose LBBB with good
efficiency and, if used in medical centers, will greatly help diagnose this
arrhythmia and early treatment.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
This paper introduces a light deep learning approach for high accuracy detection of 8 different cardiac arrhythmias and normal rhythm.
A trained model for arrhythmia classification using diverse ECG signals were successfully developed and tested.
arXiv Detail & Related papers (2022-08-29T05:01:04Z) - IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG
Classification [0.9449650062296824]
In clinical settings, a cardiologist makes a diagnosis based on the standard 12-channel ECG recording.
We propose a model that leverages the multiple-channel information available in the standard ECG recordings and learns patterns at the beat, rhythm, and channel level.
The experimental results show that our model achieved a macro-averaged ROC-AUC score of 0.9216, mean accuracy of 88.85%, and a maximum F1 score of 0.8057 on the PTB-XL dataset.
arXiv Detail & Related papers (2022-04-06T16:29:10Z) - Machine Learning-based Efficient Ventricular Tachycardia Detection Model
of ECG Signal [0.0]
In primary diagnosis and analysis of heart defects, an ECG signal plays a significant role.
This paper presents a model for the prediction of ventricular tachycardia arrhythmia using noise filtering, a unique set of ECG features, and a machine learning-based classifier model.
arXiv Detail & Related papers (2021-12-24T05:56:09Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
This study presents a method to detect atrial fibrillation with lead-I ECGs using artificial intelligence.
The aim of the study is to compare the accuracy of the diagnoses estimated by cardiologists and artificial intelligence over lead-I ECGs.
arXiv Detail & Related papers (2021-04-15T12:50:16Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
We build an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis.
For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal waveform.
We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class.
arXiv Detail & Related papers (2020-10-21T18:11:36Z) - Interpretable Deep Learning for Automatic Diagnosis of 12-lead
Electrocardiogram [15.464768773761527]
We developed a deep neural network for multi-label classification of cardiac arrhythmias in 12-lead ECG recordings.
The proposed model achieved an average area under the receiver operating characteristic curve (AUC) of 0.970 and an average F1 score of 0.813.
The best-performing leads are lead I, aVR, and V5 among 12 leads.
arXiv Detail & Related papers (2020-10-20T14:51:00Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.