論文の概要: Natural Language Inference with Mixed Effects
- arxiv url: http://arxiv.org/abs/2010.10501v1
- Date: Tue, 20 Oct 2020 17:54:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 07:05:44.459279
- Title: Natural Language Inference with Mixed Effects
- Title(参考訳): 混合効果を用いた自然言語推論
- Authors: William Gantt, Benjamin Kane, Aaron Steven White
- Abstract要約: 本稿では,モデルに不要なノイズを加えることなく,アグリゲーションステップをスキップし,生のアノテーションを直接訓練できる汎用手法を提案する。
本研究では,既存のニューラルモデルにテクスタイノネータランダム効果を組み込むことにより,テクスタイトミックス効果モデルの概念を一般化し,そのような効果を組み込まないモデルよりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 4.560556461930812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is growing evidence that the prevalence of disagreement in the raw
annotations used to construct natural language inference datasets makes the
common practice of aggregating those annotations to a single label problematic.
We propose a generic method that allows one to skip the aggregation step and
train on the raw annotations directly without subjecting the model to unwanted
noise that can arise from annotator response biases. We demonstrate that this
method, which generalizes the notion of a \textit{mixed effects model} by
incorporating \textit{annotator random effects} into any existing neural model,
improves performance over models that do not incorporate such effects.
- Abstract(参考訳): 自然言語推論データセットの構築に使用される生アノテーションにおける不一致の頻度は、それらのアノテーションを単一のラベルに集約する一般的な方法であることを示す証拠が増えている。
本稿では,アノテータ応答バイアスから生じる不要な雑音にモデルを従わずに,アグリゲータのステップを省略し,生のアノテーションを直接訓練する汎用手法を提案する。
本手法は,既存のニューラルモデルに \textit{annotator random effects} を組み込むことにより,そのような効果を組み込まないモデルに対する性能を向上させることにより, \textit{mixed effects model} の概念を一般化したものである。
関連論文リスト
- Counterfactual Generation from Language Models [64.55296662926919]
対実的推論が介入と概念的に異なることを示す。
そこで本研究では,真の文字列反事実を生成するためのフレームワークを提案する。
我々の実験は、このアプローチが有意義な反事実を生み出すことを示した。
論文 参考訳(メタデータ) (2024-11-11T17:57:30Z) - Relation-based Counterfactual Data Augmentation and Contrastive Learning for Robustifying Natural Language Inference Models [0.0]
本稿では,トークンベースおよび文ベースの拡張手法を用いて,対実文ペアを生成する手法を提案する。
提案手法は,NLIモデルの性能とロバスト性を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-10-28T03:43:25Z) - Attacks against Abstractive Text Summarization Models through Lead Bias and Influence Functions [1.7863534204867277]
大規模言語モデルは、敵の摂動やデータ中毒攻撃に弱い。
本研究では,要約モデルに固有の鉛バイアスを生かして,新しいアプローチを明らかにする。
また, インフルエンス関数の革新的な適用法を導入し, データ中毒を発生させ, モデルの整合性を損なう。
論文 参考訳(メタデータ) (2024-10-26T00:35:15Z) - Contextual Biasing to Improve Domain-specific Custom Vocabulary Audio Transcription without Explicit Fine-Tuning of Whisper Model [0.0]
OpenAIのWhisper Automated Speech Recognitionモデルでは、さまざまなデータセットやドメインをまたいだ一般化が優れている。
モデルパラメータを明示的に微調整したり変更したりすることなく、転写精度を向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-10-24T01:58:11Z) - AMRFact: Enhancing Summarization Factuality Evaluation with AMR-Driven Negative Samples Generation [57.8363998797433]
抽象的意味表現(AMR)を用いた摂動要約を生成するフレームワークであるAMRFactを提案する。
提案手法は,AMRグラフに一貫した要約を解析し,制御された事実不整合を注入して負の例を生成し,一貫性のない事実不整合要約を高い誤差型カバレッジで生成する。
論文 参考訳(メタデータ) (2023-11-16T02:56:29Z) - NaturalAdversaries: Can Naturalistic Adversaries Be as Effective as
Artificial Adversaries? [61.58261351116679]
自然言語理解タスクのための2段階の逆例生成フレームワーク(NaturalAdversaries)を提案する。
モデルパラメータへのアクセスレベルに基づいて、ブラックボックスとホワイトボックスの双方に適応可能である。
以上の結果から,これらの対立はドメイン全体にわたって一般化され,ニューラルネットワーク分類モデルの堅牢性向上に向けた今後の研究への洞察が得られた。
論文 参考訳(メタデータ) (2022-11-08T16:37:34Z) - Rethinking Generalization: The Impact of Annotation Style on Medical
Image Segmentation [9.056814157662965]
アノテーションのバイアスを無視するのではなく、アノテーションのバイアスをモデル化することで、データセット間のアノテーションスタイルの違いを考慮できる有望な方法が示される。
次に、特定の画像特徴と相関するモデルアノテーションスタイルに対する画像条件付け手法を提案する。
論文 参考訳(メタデータ) (2022-10-31T15:28:49Z) - Does BERT really agree ? Fine-grained Analysis of Lexical Dependence on
a Syntactic Task [70.29624135819884]
目的の構文テンプレート上で,BERTが語彙非依存の主観値数アグリーメント(NA)を実行できる範囲について検討した。
名詞文では,単純なテンプレートに対してモデルがよく一般化されるが,1つのアトラクターが存在する場合,語彙非依存の構文一般化を行うことができないことが示唆された。
論文 参考訳(メタデータ) (2022-04-14T11:33:15Z) - Avoiding Inference Heuristics in Few-shot Prompt-based Finetuning [57.4036085386653]
文ペア分類タスクのプロンプトベースモデルでは,語彙重なりに基づく推論の一般的な落とし穴が依然として残っていることを示す。
そこで,プレトレーニングウェイトを保存する正規化を加えることは,この破壊的な微調整の傾向を緩和するのに有効であることを示す。
論文 参考訳(メタデータ) (2021-09-09T10:10:29Z) - Learning to Manipulate Individual Objects in an Image [71.55005356240761]
本稿では,独立性および局所性を有する潜在因子を用いた生成モデルを学習する手法について述べる。
これは、潜伏変数の摂動が、オブジェクトに対応する合成画像の局所領域のみに影響を与えることを意味する。
他の教師なし生成モデルとは異なり、オブジェクトレベルのアノテーションを必要とせず、オブジェクト中心の操作を可能にする。
論文 参考訳(メタデータ) (2020-04-11T21:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。