論文の概要: Attacks against Abstractive Text Summarization Models through Lead Bias and Influence Functions
- arxiv url: http://arxiv.org/abs/2410.20019v1
- Date: Sat, 26 Oct 2024 00:35:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:15:21.810100
- Title: Attacks against Abstractive Text Summarization Models through Lead Bias and Influence Functions
- Title(参考訳): リードバイアスによる抽象テキスト要約モデルに対する攻撃と影響関数
- Authors: Poojitha Thota, Shirin Nilizadeh,
- Abstract要約: 大規模言語モデルは、敵の摂動やデータ中毒攻撃に弱い。
本研究では,要約モデルに固有の鉛バイアスを生かして,新しいアプローチを明らかにする。
また, インフルエンス関数の革新的な適用法を導入し, データ中毒を発生させ, モデルの整合性を損なう。
- 参考スコア(独自算出の注目度): 1.7863534204867277
- License:
- Abstract: Large Language Models have introduced novel opportunities for text comprehension and generation. Yet, they are vulnerable to adversarial perturbations and data poisoning attacks, particularly in tasks like text classification and translation. However, the adversarial robustness of abstractive text summarization models remains less explored. In this work, we unveil a novel approach by exploiting the inherent lead bias in summarization models, to perform adversarial perturbations. Furthermore, we introduce an innovative application of influence functions, to execute data poisoning, which compromises the model's integrity. This approach not only shows a skew in the models behavior to produce desired outcomes but also shows a new behavioral change, where models under attack tend to generate extractive summaries rather than abstractive summaries.
- Abstract(参考訳): 大規模言語モデルは、テキスト理解と生成の新しい機会を導入してきた。
しかし、特にテキスト分類や翻訳といったタスクでは、敵対的な摂動やデータ中毒攻撃に弱い。
しかし、抽象的なテキスト要約モデルの逆強靭性はいまだ研究されていない。
本研究では,要約モデルに固有の鉛バイアスを生かして,対角摂動を行う新しいアプローチを明らかにする。
さらに, インフルエンス関数の革新的な適用法を導入し, データ中毒を発生させ, モデルの整合性を損なう。
このアプローチは、望ましい結果を生み出すためのモデル行動の歪みを示すだけでなく、新たな行動変化を示す。
関連論文リスト
- SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
ホワイトボックスの敵攻撃とは対照的に、転送攻撃は現実世界のシナリオをより反映している。
本稿では,SA-Attackと呼ばれる自己拡張型転送攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-12-08T09:08:50Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - Correcting Diverse Factual Errors in Abstractive Summarization via
Post-Editing and Language Model Infilling [56.70682379371534]
提案手法は, 誤要約の修正において, 従来手法よりもはるかに優れていることを示す。
我々のモデルであるFactEditは、CNN/DMで11点、XSumで31点以上のファクトリティスコアを改善する。
論文 参考訳(メタデータ) (2022-10-22T07:16:19Z) - The Factual Inconsistency Problem in Abstractive Text Summarization: A
Survey [25.59111855107199]
Seq2Seqフレームワークによって開発されたニューラルエンコーダデコーダモデルは、より抽象的な要約を生成するという目標を達成するために提案されている。
高いレベルでは、そのようなニューラルネットワークは、使用される単語やフレーズに制約を加えることなく、自由に要約を生成することができる。
しかし、神経モデルの抽象化能力は二重刃の剣である。
論文 参考訳(メタデータ) (2021-04-30T08:46:13Z) - SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for
Text Summarization [14.787106201073154]
SummVisは抽象要約を視覚化するためのオープンソースツールです。
テキスト要約に関連するモデル、データ、評価メトリクスの詳細な分析を可能にする。
論文 参考訳(メタデータ) (2021-04-15T17:13:00Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - Understanding Neural Abstractive Summarization Models via Uncertainty [54.37665950633147]
seq2seq抽象要約モデルは、自由形式の方法でテキストを生成する。
モデルのトークンレベルの予測のエントロピー、すなわち不確実性について検討する。
要約とテキスト生成モデルをより広範囲に解析する上で,不確実性は有用であることを示す。
論文 参考訳(メタデータ) (2020-10-15T16:57:27Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Factは、質問応答モデルから学んだ知識を活用して、スパン選択によるシステム生成サマリーの補正を行う2つの事実補正モデルのスイートである。
我々のモデルは、ソースコードのセマンティック一貫性を確保するために、反復的または自動回帰的にエンティティを置き換えるために、シングルまたはマルチマスキング戦略を採用している。
実験の結果,自動測定と人的評価の両面において,要約品質を犠牲にすることなく,システム生成要約の事実整合性を大幅に向上させることができた。
論文 参考訳(メタデータ) (2020-10-06T02:51:02Z) - Generating (Factual?) Narrative Summaries of RCTs: Experiments with
Neural Multi-Document Summarization [22.611879349101596]
系統的なレビューから,関連記事の要約を抽象的に要約するために,現代のニューラルモデルを評価する。
現代の要約システムは一貫して流動的で関連するシナプスを生み出すが、必ずしも現実的とは限らない。
論文 参考訳(メタデータ) (2020-08-25T22:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。