Iterative Amortized Policy Optimization
- URL: http://arxiv.org/abs/2010.10670v2
- Date: Fri, 22 Oct 2021 20:44:57 GMT
- Title: Iterative Amortized Policy Optimization
- Authors: Joseph Marino, Alexandre Pich\'e, Alessandro Davide Ialongo, Yisong
Yue
- Abstract summary: Policy networks are a central feature of deep reinforcement learning (RL) algorithms for continuous control.
From the variational inference perspective, policy networks are a form of textitamortized optimization, optimizing network parameters rather than the policy distributions directly.
We demonstrate that iterative amortized policy optimization, yields performance improvements over direct amortization on benchmark continuous control tasks.
- Score: 147.63129234446197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Policy networks are a central feature of deep reinforcement learning (RL)
algorithms for continuous control, enabling the estimation and sampling of
high-value actions. From the variational inference perspective on RL, policy
networks, when used with entropy or KL regularization, are a form of
\textit{amortized optimization}, optimizing network parameters rather than the
policy distributions directly. However, \textit{direct} amortized mappings can
yield suboptimal policy estimates and restricted distributions, limiting
performance and exploration. Given this perspective, we consider the more
flexible class of \textit{iterative} amortized optimizers. We demonstrate that
the resulting technique, iterative amortized policy optimization, yields
performance improvements over direct amortization on benchmark continuous
control tasks.
Related papers
- Preferred-Action-Optimized Diffusion Policies for Offline Reinforcement Learning [19.533619091287676]
We propose a novel preferred-action-optimized diffusion policy for offline reinforcement learning.
In particular, an expressive conditional diffusion model is utilized to represent the diverse distribution of a behavior policy.
Experiments demonstrate that the proposed method provides competitive or superior performance compared to previous state-of-the-art offline RL methods.
arXiv Detail & Related papers (2024-05-29T03:19:59Z) - Acceleration in Policy Optimization [50.323182853069184]
We work towards a unifying paradigm for accelerating policy optimization methods in reinforcement learning (RL) by integrating foresight in the policy improvement step via optimistic and adaptive updates.
We define optimism as predictive modelling of the future behavior of a policy, and adaptivity as taking immediate and anticipatory corrective actions to mitigate errors from overshooting predictions or delayed responses to change.
We design an optimistic policy gradient algorithm, adaptive via meta-gradient learning, and empirically highlight several design choices pertaining to acceleration, in an illustrative task.
arXiv Detail & Related papers (2023-06-18T15:50:57Z) - Policy Gradient Algorithms Implicitly Optimize by Continuation [7.351769270728942]
We argue that exploration in policy-gradient algorithms consists in a continuation of the return of the policy at hand, and that policies should be history-dependent rather than to maximize the return.
arXiv Detail & Related papers (2023-05-11T14:50:20Z) - Offline Policy Optimization in RL with Variance Regularizaton [142.87345258222942]
We propose variance regularization for offline RL algorithms, using stationary distribution corrections.
We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer.
The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms.
arXiv Detail & Related papers (2022-12-29T18:25:01Z) - Supported Policy Optimization for Offline Reinforcement Learning [74.1011309005488]
Policy constraint methods to offline reinforcement learning (RL) typically utilize parameterization or regularization.
Regularization methods reduce the divergence between the learned policy and the behavior policy.
This paper presents Supported Policy OpTimization (SPOT), which is directly derived from the theoretical formalization of the density-based support constraint.
arXiv Detail & Related papers (2022-02-13T07:38:36Z) - OptiDICE: Offline Policy Optimization via Stationary Distribution
Correction Estimation [59.469401906712555]
We present an offline reinforcement learning algorithm that prevents overestimation in a more principled way.
Our algorithm, OptiDICE, directly estimates the stationary distribution corrections of the optimal policy.
We show that OptiDICE performs competitively with the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-21T00:43:30Z) - Policy Mirror Descent for Regularized Reinforcement Learning: A
Generalized Framework with Linear Convergence [60.20076757208645]
This paper proposes a general policy mirror descent (GPMD) algorithm for solving regularized RL.
We demonstrate that our algorithm converges linearly over an entire range learning rates, in a dimension-free fashion, to the global solution.
arXiv Detail & Related papers (2021-05-24T02:21:34Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (REPS) has demonstrated successful policy learning on a number of simulated and real-world robotic domains.
There exist no guarantees on REPS's performance when using gradient-based solvers.
We introduce a technique that uses emphgenerative access to the underlying decision process to compute parameter updates that maintain favorable convergence to the optimal regularized policy.
arXiv Detail & Related papers (2021-03-17T16:22:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.