TargetDrop: A Targeted Regularization Method for Convolutional Neural
Networks
- URL: http://arxiv.org/abs/2010.10716v1
- Date: Wed, 21 Oct 2020 02:26:05 GMT
- Title: TargetDrop: A Targeted Regularization Method for Convolutional Neural
Networks
- Authors: Hui Zhu, Xiaofang Zhao
- Abstract summary: Dropout regularization has been widely used in deep learning but performs less effective for convolutional neural networks.
We propose a targeted regularization method named TargetDrop which incorporates the attention mechanism to drop the discriminative feature units.
- Score: 6.014015535168499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dropout regularization has been widely used in deep learning but performs
less effective for convolutional neural networks since the spatially correlated
features allow dropped information to still flow through the networks. Some
structured forms of dropout have been proposed to address this but prone to
result in over or under regularization as features are dropped randomly. In
this paper, we propose a targeted regularization method named TargetDrop which
incorporates the attention mechanism to drop the discriminative feature units.
Specifically, it masks out the target regions of the feature maps corresponding
to the target channels. Experimental results compared with the other methods or
applied for different networks demonstrate the regularization effect of our
method.
Related papers
- Densely Decoded Networks with Adaptive Deep Supervision for Medical
Image Segmentation [19.302294715542175]
We propose densely decoded networks (ddn), by selectively introducing 'crutch' network connections.
Such 'crutch' connections in each upsampling stage of the network decoder enhance target localization.
We also present a training strategy based on adaptive deep supervision (ads), which exploits and adapts specific attributes of input dataset.
arXiv Detail & Related papers (2024-02-05T00:44:57Z) - TANGOS: Regularizing Tabular Neural Networks through Gradient
Orthogonalization and Specialization [69.80141512683254]
We introduce Tabular Neural Gradient Orthogonalization and gradient (TANGOS)
TANGOS is a novel framework for regularization in the tabular setting built on latent unit attributions.
We demonstrate that our approach can lead to improved out-of-sample generalization performance, outperforming other popular regularization methods.
arXiv Detail & Related papers (2023-03-09T18:57:13Z) - Bridging the Gap Between Target Networks and Functional Regularization [61.051716530459586]
We propose an explicit Functional Regularization that is a convex regularizer in function space and can easily be tuned.
We analyze the convergence of our method theoretically and empirically demonstrate that replacing Target Networks with the more theoretically grounded Functional Regularization approach leads to better sample efficiency and performance improvements.
arXiv Detail & Related papers (2022-10-21T22:27:07Z) - TSG: Target-Selective Gradient Backprop for Probing CNN Visual Saliency [72.9106103283475]
We study the visual saliency, a.k.a. visual explanation, to interpret convolutional neural networks.
Inspired by those observations, we propose a novel visual saliency framework, termed Target-Selective Gradient (TSG) backprop.
The proposed TSG consists of two components, namely, TSG-Conv and TSG-FC, which rectify the gradients for convolutional layers and fully-connected layers, respectively.
arXiv Detail & Related papers (2021-10-11T12:00:20Z) - Latent Space Regularization for Unsupervised Domain Adaptation in
Semantic Segmentation [14.050836886292869]
We introduce feature-level space-shaping regularization strategies to reduce the domain discrepancy in semantic segmentation.
We verify the effectiveness of such methods in the autonomous driving setting.
arXiv Detail & Related papers (2021-04-06T16:07:22Z) - FocusedDropout for Convolutional Neural Network [6.066543113636522]
FocusedDropout is a non-random dropout method to make the network focus more on the target.
Even a slight cost, 10% of batches employing FocusedDropout, can produce a nice performance boost over the baselines.
arXiv Detail & Related papers (2021-03-29T08:47:55Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Attentional Local Contrast Networks for Infrared Small Target Detection [15.882749652217653]
We propose a novel model-driven deep network for infrared small target detection.
We modularize a conventional local contrast measure method as a depth-wise parameterless nonlinear feature refinement layer in an end-to-end network.
We conduct detailed ablation studies with varying network depths to empirically verify the effectiveness and efficiency of each component in our network architecture.
arXiv Detail & Related papers (2020-12-15T19:33:09Z) - Attentive CutMix: An Enhanced Data Augmentation Approach for Deep
Learning Based Image Classification [58.20132466198622]
We propose Attentive CutMix, a naturally enhanced augmentation strategy based on CutMix.
In each training iteration, we choose the most descriptive regions based on the intermediate attention maps from a feature extractor.
Our proposed method is simple yet effective, easy to implement and can boost the baseline significantly.
arXiv Detail & Related papers (2020-03-29T15:01:05Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z) - Exploiting the Full Capacity of Deep Neural Networks while Avoiding
Overfitting by Targeted Sparsity Regularization [1.3764085113103217]
Overfitting is one of the most common problems when training deep neural networks on comparatively small datasets.
We propose novel targeted sparsity visualization and regularization strategies to counteract overfitting.
arXiv Detail & Related papers (2020-02-21T11:38:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.