Safety Verification of Model Based Reinforcement Learning Controllers
- URL: http://arxiv.org/abs/2010.10740v1
- Date: Wed, 21 Oct 2020 03:35:28 GMT
- Title: Safety Verification of Model Based Reinforcement Learning Controllers
- Authors: Akshita Gupta, Inseok Hwang
- Abstract summary: We present a novel safety verification framework for model-based RL controllers using reachable set analysis.
The proposed frame-work can efficiently handle models and controllers which are represented using neural networks.
- Score: 7.407039316561176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-based reinforcement learning (RL) has emerged as a promising tool for
developing controllers for real world systems (e.g., robotics, autonomous
driving, etc.). However, real systems often have constraints imposed on their
state space which must be satisfied to ensure the safety of the system and its
environment. Developing a verification tool for RL algorithms is challenging
because the non-linear structure of neural networks impedes analytical
verification of such models or controllers. To this end, we present a novel
safety verification framework for model-based RL controllers using reachable
set analysis. The proposed frame-work can efficiently handle models and
controllers which are represented using neural networks. Additionally, if a
controller fails to satisfy the safety constraints in general, the proposed
framework can also be used to identify the subset of initial states from which
the controller can be safely executed.
Related papers
- Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback [16.46487826869775]
We propose a novel framework, Neural Internal Model Control, which integrates model-based control with RL-based control to enhance robustness.
Our framework streamlines the predictive model by applying Newton-Euler equations for rigid-body dynamics, eliminating the need to capture complex high-dimensional nonlinearities.
We demonstrate the effectiveness of our framework on both quadrotors and quadrupedal robots, achieving superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-11-20T07:07:42Z) - Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
Learning-based neural network (NN) control policies have shown impressive empirical performance in a wide range of tasks in robotics and control.
Lyapunov stability guarantees over the region-of-attraction (ROA) for NN controllers with nonlinear dynamical systems are challenging to obtain.
We demonstrate a new framework for learning NN controllers together with Lyapunov certificates using fast empirical falsification and strategic regularizations.
arXiv Detail & Related papers (2024-04-11T17:49:15Z) - Controllability-Constrained Deep Network Models for Enhanced Control of
Dynamical Systems [4.948174943314265]
Control of a dynamical system without the knowledge of dynamics is an important and challenging task.
Modern machine learning approaches, such as deep neural networks (DNNs), allow for the estimation of a dynamics model from control inputs and corresponding state observation outputs.
We propose a control-theoretical method that explicitly enhances models estimated from data with controllability.
arXiv Detail & Related papers (2023-11-11T00:04:26Z) - A General Framework for Verification and Control of Dynamical Models via Certificate Synthesis [54.959571890098786]
We provide a framework to encode system specifications and define corresponding certificates.
We present an automated approach to formally synthesise controllers and certificates.
Our approach contributes to the broad field of safe learning for control, exploiting the flexibility of neural networks.
arXiv Detail & Related papers (2023-09-12T09:37:26Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
We propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations.
Our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
arXiv Detail & Related papers (2023-01-27T22:28:19Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Bridging Model-based Safety and Model-free Reinforcement Learning
through System Identification of Low Dimensional Linear Models [16.511440197186918]
We propose a new method to combine model-based safety with model-free reinforcement learning.
We show that a low-dimensional dynamical model is sufficient to capture the dynamics of the closed-loop system.
We illustrate that the found linear model is able to provide guarantees by safety-critical optimal control framework.
arXiv Detail & Related papers (2022-05-11T22:03:18Z) - Deep Reinforcement Learning with Shallow Controllers: An Experimental
Application to PID Tuning [3.9146761527401424]
We demonstrate the challenges in implementing a state of the art deep RL algorithm on a real physical system.
At the core of our approach is the use of a PID controller as the trainable RL policy.
arXiv Detail & Related papers (2021-11-13T18:48:28Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Generating Probabilistic Safety Guarantees for Neural Network
Controllers [30.34898838361206]
We use a dynamics model to determine the output properties that must hold for a neural network controller to operate safely.
We develop an adaptive verification approach to efficiently generate an overapproximation of the neural network policy.
We show that our method is able to generate meaningful probabilistic safety guarantees for aircraft collision avoidance neural networks.
arXiv Detail & Related papers (2021-03-01T18:48:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.