Controllability-Constrained Deep Network Models for Enhanced Control of
Dynamical Systems
- URL: http://arxiv.org/abs/2311.06438v1
- Date: Sat, 11 Nov 2023 00:04:26 GMT
- Title: Controllability-Constrained Deep Network Models for Enhanced Control of
Dynamical Systems
- Authors: Suruchi Sharma, Volodymyr Makarenko, Gautam Kumar, Stas Tiomkin
- Abstract summary: Control of a dynamical system without the knowledge of dynamics is an important and challenging task.
Modern machine learning approaches, such as deep neural networks (DNNs), allow for the estimation of a dynamics model from control inputs and corresponding state observation outputs.
We propose a control-theoretical method that explicitly enhances models estimated from data with controllability.
- Score: 4.948174943314265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Control of a dynamical system without the knowledge of dynamics is an
important and challenging task. Modern machine learning approaches, such as
deep neural networks (DNNs), allow for the estimation of a dynamics model from
control inputs and corresponding state observation outputs. Such data-driven
models are often utilized for the derivation of model-based controllers.
However, in general, there are no guarantees that a model represented by DNNs
will be controllable according to the formal control-theoretical meaning of
controllability, which is crucial for the design of effective controllers. This
often precludes the use of DNN-estimated models in applications, where formal
controllability guarantees are required. In this proof-of-the-concept work, we
propose a control-theoretical method that explicitly enhances models estimated
from data with controllability. That is achieved by augmenting the model
estimation objective with a controllability constraint, which penalizes models
with a low degree of controllability. As a result, the models estimated with
the proposed controllability constraint allow for the derivation of more
efficient controllers, they are interpretable by the control-theoretical
quantities and have a lower long-term prediction error. The proposed method
provides new insights on the connection between the DNN-based estimation of
unknown dynamics and the control-theoretical guarantees of the solution
properties. We demonstrate the superiority of the proposed method in two
standard classical control systems with state observation given by low
resolution high-dimensional images.
Related papers
- Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback [16.46487826869775]
We propose a novel framework, Neural Internal Model Control, which integrates model-based control with RL-based control to enhance robustness.
Our framework streamlines the predictive model by applying Newton-Euler equations for rigid-body dynamics, eliminating the need to capture complex high-dimensional nonlinearities.
We demonstrate the effectiveness of our framework on both quadrotors and quadrupedal robots, achieving superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-11-20T07:07:42Z) - Receding Hamiltonian-Informed Optimal Neural Control and State Estimation for Closed-Loop Dynamical Systems [4.05766189327054]
Hamiltonian-Informed Optimal Neural (Hion) controllers are a novel class of neural network-based controllers for dynamical systems.
Hion controllers estimate future states and compute optimal control inputs using Pontryagin's Principle.
arXiv Detail & Related papers (2024-11-02T16:06:29Z) - CAR: Controllable Autoregressive Modeling for Visual Generation [100.33455832783416]
Controllable AutoRegressive Modeling (CAR) is a novel, plug-and-play framework that integrates conditional control into multi-scale latent variable modeling.
CAR progressively refines and captures control representations, which are injected into each autoregressive step of the pre-trained model to guide the generation process.
Our approach demonstrates excellent controllability across various types of conditions and delivers higher image quality compared to previous methods.
arXiv Detail & Related papers (2024-10-07T00:55:42Z) - ControlVAR: Exploring Controllable Visual Autoregressive Modeling [48.66209303617063]
Conditional visual generation has witnessed remarkable progress with the advent of diffusion models (DMs)
Challenges such as expensive computational cost, high inference latency, and difficulties of integration with large language models (LLMs) have necessitated exploring alternatives to DMs.
This paper introduces Controlmore, a novel framework that explores pixel-level controls in visual autoregressive modeling for flexible and efficient conditional generation.
arXiv Detail & Related papers (2024-06-14T06:35:33Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
We propose generic model structures combining delay-coordinate encoding of measurements and full-state decoding to integrate reduced Koopman modeling and state estimation.
A case study demonstrates that our approach provides accurate control models and enables real-time capable nonlinear model predictive control of a high-purity cryogenic distillation column.
arXiv Detail & Related papers (2024-01-09T11:54:54Z) - Steady-State Error Compensation in Reference Tracking and Disturbance
Rejection Problems for Reinforcement Learning-Based Control [0.9023847175654602]
Reinforcement learning (RL) is a promising, upcoming topic in automatic control applications.
Initiative action state augmentation (IASA) for actor-critic-based RL controllers is introduced.
This augmentation does not require any expert knowledge, leaving the approach model free.
arXiv Detail & Related papers (2022-01-31T16:29:19Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Stochastic Deep Model Reference Adaptive Control [9.594432031144715]
We present a Deep Neural Network-based Model Reference Adaptive Control.
Deep Model Reference Adaptive Control uses a Lyapunov-based method to adapt the output-layer weights of the DNN model in real-time.
A data-driven supervised learning algorithm is used to update the inner-layers parameters.
arXiv Detail & Related papers (2021-08-04T14:05:09Z) - Safety Verification of Model Based Reinforcement Learning Controllers [7.407039316561176]
We present a novel safety verification framework for model-based RL controllers using reachable set analysis.
The proposed frame-work can efficiently handle models and controllers which are represented using neural networks.
arXiv Detail & Related papers (2020-10-21T03:35:28Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z) - Predictive Coding for Locally-Linear Control [92.35650774524399]
High-dimensional observations and unknown dynamics are major challenges when applying optimal control to many real-world decision making tasks.
The Learning Controllable Embedding (LCE) framework addresses these challenges by embedding the observations into a lower dimensional latent space.
We show theoretically that explicit next-observation prediction can be replaced with predictive coding.
arXiv Detail & Related papers (2020-03-02T18:20:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.