Ultimate Limits of Thermal Pattern Recognition
- URL: http://arxiv.org/abs/2010.10855v3
- Date: Mon, 10 May 2021 10:02:45 GMT
- Title: Ultimate Limits of Thermal Pattern Recognition
- Authors: Cillian Harney, Leonardo Banchi and Stefano Pirandola
- Abstract summary: We study thermal imaging as an environment localisation task, in which thermal images are modelled as ensembles of Gaussian phase insensitive channels with identical transmissivity.
We show that quantum enhanced strategies may be used to provide significant quantum advantage over known optimal classical strategies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Channel Discrimination (QCD) presents a fundamental task in quantum
information theory, with critical applications in quantum reading,
illumination, data-readout and more. The extension to multiple quantum channel
discrimination has seen a recent focus to characterise potential quantum
advantage associated with quantum enhanced discriminatory protocols. In this
paper, we study thermal imaging as an environment localisation task, in which
thermal images are modelled as ensembles of Gaussian phase insensitive channels
with identical transmissivity, and pixels possess properties according to
background (cold) or target (warm) thermal channels. Via the teleportation
stretching of adaptive quantum protocols, we derive ultimate limits on the
precision of pattern classification of abstract, binary thermal image spaces,
and show that quantum enhanced strategies may be used to provide significant
quantum advantage over known optimal classical strategies. The environmental
conditions and necessary resources for which advantage may be obtained are
studied and discussed. We then numerically investigate the use of quantum
enhanced statistical classifiers, in which quantum sensors are used in
conjunction with machine learning image classification methods. Proving
definitive advantage in the low loss regime, this work motivates the use of
quantum enhanced sources for short-range thermal imaging and detection
techniques for future quantum technologies.
Related papers
- Photonic Quantum Receiver Attaining the Helstrom Bound [0.9674145073701151]
We propose an efficient decomposition scheme for a quantum receiver that attains the Helstrom bound in the low-photon regime for discriminating binary coherent states.
We account for realistic conditions by examining the impact of photon loss and imperfect photon detection, including the presence of dark counts.
Our scheme motivates testing quantum advantages with cubic-phase gates and designing photonic quantum computers to optimize symbol-by-symbol measurements in optical communication.
arXiv Detail & Related papers (2024-10-29T07:08:39Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum-enhanced pattern recognition [0.0]
We show for the first time quantum advantage in the multi-cell problem of pattern recognition.
We use entangled probe states and photon-counting to achieve quantum advantage in classification error over that achieved with classical resources.
This motivates future developments of quantum-enhanced pattern recognition of bosonic-loss within complex domains.
arXiv Detail & Related papers (2023-04-12T13:06:38Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - RGB Image Classification with Quantum Convolutional Ansaetze [18.379304679643436]
We propose two types of quantum circuit ansaetze to simulate convolution operations on RGB images.
To the best of our knowledge, this is the first work of a quantum convolutional circuit to deal with RGB images effectively.
We also investigate the relationship between the size of quantum circuit ansatz and the learnability of the hybrid quantum-classical convolutional neural network.
arXiv Detail & Related papers (2021-07-23T09:38:59Z) - Quantum dot technology for quantum repeaters: from entangled photon
generation towards the integration with quantum memories [0.0]
We focus on memory-based quantum-repeater schemes that rely on semiconductor quantum dots for the generation of polarization entangled photons.
We offer a perspective on integration with quantum memories, both highlighting preliminary works on natural-artificial atomic interfaces.
To complete the overview, we also present recent implementations of entanglement-based quantum communication protocols with quantum dots.
arXiv Detail & Related papers (2021-04-14T18:41:01Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Photonic Quantum Metrology [0.0]
The aim of this research field is the estimation of unknown parameters exploiting quantum resources.
We focus on the application of photonic technology for this task, with particular attention to phase estimation.
arXiv Detail & Related papers (2020-03-12T14:37:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.