Exploring Sequence-to-Sequence Models for SPARQL Pattern Composition
- URL: http://arxiv.org/abs/2010.10900v1
- Date: Wed, 21 Oct 2020 11:12:01 GMT
- Title: Exploring Sequence-to-Sequence Models for SPARQL Pattern Composition
- Authors: Anand Panchbhai and Tommaso Soru and Edgard Marx
- Abstract summary: A booming amount of information is continuously added to the Internet as structured and unstructured data, feeding knowledge bases such as DBpedia and Wikidata.
The aim of Question Answering systems is to allow lay users to access such data using natural language without needing to write formal queries.
We show that sequence-to-sequence models are a viable and promising option to transform long utterances into complex SPARQL queries.
- Score: 0.5639451539396457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A booming amount of information is continuously added to the Internet as
structured and unstructured data, feeding knowledge bases such as DBpedia and
Wikidata with billions of statements describing millions of entities. The aim
of Question Answering systems is to allow lay users to access such data using
natural language without needing to write formal queries. However, users often
submit questions that are complex and require a certain level of abstraction
and reasoning to decompose them into basic graph patterns. In this short paper,
we explore the use of architectures based on Neural Machine Translation called
Neural SPARQL Machines to learn pattern compositions. We show that
sequence-to-sequence models are a viable and promising option to transform long
utterances into complex SPARQL queries.
Related papers
- Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA [51.3033125256716]
We model the subgraph retrieval task as a conditional generation task handled by small language models.
Our base generative subgraph retrieval model, consisting of only 220M parameters, competitive retrieval performance compared to state-of-the-art models.
Our largest 3B model, when plugged with an LLM reader, sets new SOTA end-to-end performance on both the WebQSP and CWQ benchmarks.
arXiv Detail & Related papers (2024-10-08T15:22:36Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
We investigate the potential of Large Language Models to enable unstructured data analytics.
We propose a new Universal Query Engine (UQE) that directly interrogates and draws insights from unstructured data collections.
arXiv Detail & Related papers (2024-06-23T06:58:55Z) - NL2KQL: From Natural Language to Kusto Query [1.7931930942711818]
NL2KQL is an innovative framework that uses large language models (LLMs) to convert natural language queries (NLQs) to Kusto Query Language (KQL) queries.
To validate NL2KQL's performance, we utilize an array of online (based on query execution) and offline (based on query parsing) metrics.
arXiv Detail & Related papers (2024-04-03T01:09:41Z) - An In-Context Schema Understanding Method for Knowledge Base Question
Answering [70.87993081445127]
Large Language Models (LLMs) have shown strong capabilities in language understanding and can be used to solve this task.
Existing methods bypass this challenge by initially employing LLMs to generate drafts of logic forms without schema-specific details.
We propose a simple In-Context Understanding (ICSU) method that enables LLMs to directly understand schemas by leveraging in-context learning.
arXiv Detail & Related papers (2023-10-22T04:19:17Z) - Spider4SPARQL: A Complex Benchmark for Evaluating Knowledge Graph
Question Answering Systems [1.4732811715354452]
It has become increasingly important to provide realistic benchmarks for evaluating Knowledge Graph Question Answering systems.
Spider4SPARQL is a new SPARQL benchmark dataset featuring 9,693 previously existing manually generated NL questions and 4,721 unique, novel, and complex SPARQL queries.
We evaluate the system with state-of-the-art KGQA systems as well as LLMs, which achieve only up to 45% execution accuracy.
arXiv Detail & Related papers (2023-09-28T08:41:08Z) - Text-to-OverpassQL: A Natural Language Interface for Complex Geodata
Querying of OpenStreetMap [17.01783992725517]
We present Text-to-OverpassQL, a task designed to facilitate a natural language interface for querying geodata from OpenStreetMap (OSM)
Generating Overpass queries from natural language input serves multiple use-cases.
arXiv Detail & Related papers (2023-08-30T14:33:25Z) - SPARQLing Database Queries from Intermediate Question Decompositions [7.475027071883912]
To translate natural language questions into database queries, most approaches rely on a fully annotated training set.
We reduce this burden using grounded in databases intermediate question representations.
Our pipeline consists of two parts: a semantic that converts natural language questions into the intermediate representations and a non-trainable transpiler to the QLSPAR query language.
arXiv Detail & Related papers (2021-09-13T17:57:12Z) - SPBERT: Pre-training BERT on SPARQL Queries for End-to-end Question
Answering over Knowledge Graphs [1.1775939485654976]
SPBERT is a Transformer-based language model pre-trained on massive SPARQL query logs.
We investigate how SPBERT and encoder-decoder architecture can be adapted for Knowledge-based QA corpora.
arXiv Detail & Related papers (2021-06-18T08:39:26Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z) - Text Modular Networks: Learning to Decompose Tasks in the Language of
Existing Models [61.480085460269514]
We propose a framework for building interpretable systems that learn to solve complex tasks by decomposing them into simpler ones solvable by existing models.
We use this framework to build ModularQA, a system that can answer multi-hop reasoning questions by decomposing them into sub-questions answerable by a neural factoid single-span QA model and a symbolic calculator.
arXiv Detail & Related papers (2020-09-01T23:45:42Z) - Tree-Augmented Cross-Modal Encoding for Complex-Query Video Retrieval [98.62404433761432]
The rapid growth of user-generated videos on the Internet has intensified the need for text-based video retrieval systems.
Traditional methods mainly favor the concept-based paradigm on retrieval with simple queries.
We propose a Tree-augmented Cross-modal.
method by jointly learning the linguistic structure of queries and the temporal representation of videos.
arXiv Detail & Related papers (2020-07-06T02:50:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.