Spider4SPARQL: A Complex Benchmark for Evaluating Knowledge Graph
Question Answering Systems
- URL: http://arxiv.org/abs/2309.16248v2
- Date: Fri, 8 Dec 2023 08:52:25 GMT
- Title: Spider4SPARQL: A Complex Benchmark for Evaluating Knowledge Graph
Question Answering Systems
- Authors: Catherine Kosten, Philippe Cudr\'e-Mauroux, Kurt Stockinger
- Abstract summary: It has become increasingly important to provide realistic benchmarks for evaluating Knowledge Graph Question Answering systems.
Spider4SPARQL is a new SPARQL benchmark dataset featuring 9,693 previously existing manually generated NL questions and 4,721 unique, novel, and complex SPARQL queries.
We evaluate the system with state-of-the-art KGQA systems as well as LLMs, which achieve only up to 45% execution accuracy.
- Score: 1.4732811715354452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the recent spike in the number and availability of Large Language Models
(LLMs), it has become increasingly important to provide large and realistic
benchmarks for evaluating Knowledge Graph Question Answering (KGQA) systems. So
far the majority of benchmarks rely on pattern-based SPARQL query generation
approaches. The subsequent natural language (NL) question generation is
conducted through crowdsourcing or other automated methods, such as rule-based
paraphrasing or NL question templates. Although some of these datasets are of
considerable size, their pitfall lies in their pattern-based generation
approaches, which do not always generalize well to the vague and linguistically
diverse questions asked by humans in real-world contexts. In this paper, we
introduce Spider4SPARQL - a new SPARQL benchmark dataset featuring 9,693
previously existing manually generated NL questions and 4,721 unique, novel,
and complex SPARQL queries of varying complexity. In addition to the NL/SPARQL
pairs, we also provide their corresponding 166 knowledge graphs and ontologies,
which cover 138 different domains. Our complex benchmark enables novel ways of
evaluating the strengths and weaknesses of modern KGQA systems. We evaluate the
system with state-of-the-art KGQA systems as well as LLMs, which achieve only
up to 45\% execution accuracy, demonstrating that Spider4SPARQL is a
challenging benchmark for future research.
Related papers
- RAG-QA Arena: Evaluating Domain Robustness for Long-form Retrieval Augmented Question Answering [61.19126689470398]
Long-form RobustQA (LFRQA) is a new dataset covering 26K queries and large corpora across seven different domains.
We show via experiments that RAG-QA Arena and human judgments on answer quality are highly correlated.
Only 41.3% of the most competitive LLM's answers are preferred to LFRQA's answers, demonstrating RAG-QA Arena as a challenging evaluation platform for future research.
arXiv Detail & Related papers (2024-07-19T03:02:51Z) - SPINACH: SPARQL-Based Information Navigation for Challenging Real-World Questions [6.933892616704001]
We introduce the SPINACH dataset, an expert-annotated KBQA dataset collected from discussions on Wikidata's "Request a Query" forum.
The complexity of these in-the-wild queries calls for a KBQA system that can dynamically explore large and often incomplete schemas and reason about them.
We also introduce an in-context learning KBQA agent, also called SPINACH, that mimics how a human expert would write SPARQLs to handle challenging questions.
arXiv Detail & Related papers (2024-07-16T06:18:21Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - SPARQL Generation: an analysis on fine-tuning OpenLLaMA for Question
Answering over a Life Science Knowledge Graph [0.0]
We evaluate strategies for fine-tuning the OpenLlama LLM for question answering over life science knowledge graphs.
We propose an end-to-end data augmentation approach for extending a set of existing queries over a given knowledge graph.
We also investigate the role of semantic "clues" in the queries, such as meaningful variable names and inline comments.
arXiv Detail & Related papers (2024-02-07T07:24:01Z) - Leveraging LLMs in Scholarly Knowledge Graph Question Answering [7.951847862547378]
KGQA answers natural language questions by leveraging a large language model (LLM)
Our system achieves an F1 score of 99.0% on SciQA - one of the Scholarly Knowledge Graph Question Answering challenge benchmarks.
arXiv Detail & Related papers (2023-11-16T12:13:49Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
Question and answer generation (QAG) consists of generating a set of question-answer pairs given a context.
In this paper, we establish baselines with three different QAG methodologies that leverage sequence-to-sequence language model (LM) fine-tuning.
Experiments show that an end-to-end QAG model, which is computationally light at both training and inference times, is generally robust and outperforms other more convoluted approaches.
arXiv Detail & Related papers (2023-05-26T14:59:53Z) - LMGQS: A Large-scale Dataset for Query-focused Summarization [77.6179359525065]
We convert four generic summarization benchmarks into a new QFS benchmark dataset, LMGQS.
We establish baselines with state-of-the-art summarization models.
We achieve state-of-the-art zero-shot and supervised performance on multiple existing QFS benchmarks.
arXiv Detail & Related papers (2023-05-22T14:53:45Z) - AutoQGS: Auto-Prompt for Low-Resource Knowledge-based Question
Generation from SPARQL [18.019353543946913]
This study investigates the task of knowledge-based question generation (KBQG)
Conventional KBQG works generated questions from fact triples in the knowledge graph, which could not express complex operations like aggregation and comparison in SPARQL.
We propose an auto-prompter trained on large-scale unsupervised data to rephrase SPARQL into NL description.
arXiv Detail & Related papers (2022-08-26T06:53:46Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
We show that our model answers queries requiring complex reasoning patterns more effectively than existing KG completion algorithms.
The proposed model outperforms or performs competitively with state-of-the-art models on several KBQA benchmarks.
arXiv Detail & Related papers (2022-02-22T01:34:35Z) - Exploring Sequence-to-Sequence Models for SPARQL Pattern Composition [0.5639451539396457]
A booming amount of information is continuously added to the Internet as structured and unstructured data, feeding knowledge bases such as DBpedia and Wikidata.
The aim of Question Answering systems is to allow lay users to access such data using natural language without needing to write formal queries.
We show that sequence-to-sequence models are a viable and promising option to transform long utterances into complex SPARQL queries.
arXiv Detail & Related papers (2020-10-21T11:12:01Z) - Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks [133.93803565077337]
retrieval-augmented generation models combine pre-trained parametric and non-parametric memory for language generation.
We show that RAG models generate more specific, diverse and factual language than a state-of-the-art parametric-only seq2seq baseline.
arXiv Detail & Related papers (2020-05-22T21:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.