論文の概要: Complaint Identification in Social Media with Transformer Networks
- arxiv url: http://arxiv.org/abs/2010.10910v1
- Date: Wed, 21 Oct 2020 11:44:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 23:49:58.524495
- Title: Complaint Identification in Social Media with Transformer Networks
- Title(参考訳): トランスフォーマーネットワークを用いたソーシャルメディアにおける苦情識別
- Authors: Mali Jin and Nikolaos Aletras
- Abstract要約: 矛盾とは、人間によって現実と期待の間に負の矛盾を伝えるために広く使われる言論法である。
ソーシャルメディアにおける苦情を自動的に識別する作業は、機能ベースとタスク固有のニューラルネットワークモデルの使用に重点を置いている。
我々は、最先端の事前訓練されたニューラルランゲージモデルと、トピックや感情から得られる他の言語情報とを組み合わせて、苦情予測を行う。
- 参考スコア(独自算出の注目度): 34.35466601628141
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complaining is a speech act extensively used by humans to communicate a
negative inconsistency between reality and expectations. Previous work on
automatically identifying complaints in social media has focused on using
feature-based and task-specific neural network models. Adapting
state-of-the-art pre-trained neural language models and their combinations with
other linguistic information from topics or sentiment for complaint prediction
has yet to be explored. In this paper, we evaluate a battery of neural models
underpinned by transformer networks which we subsequently combine with
linguistic information. Experiments on a publicly available data set of
complaints demonstrate that our models outperform previous state-of-the-art
methods by a large margin achieving a macro F1 up to 87.
- Abstract(参考訳): 苦情は、現実と期待の間の否定的な矛盾を伝えるために、人間が広く使う言葉行為である。
ソーシャルメディアにおける苦情を自動的に識別する作業は、機能ベースとタスク固有のニューラルネットワークモデルの使用に重点を置いている。
最先端の訓練済みニューラルネットワークモデルとそれらの組み合わせをトピックや不満予測のための感情から他の言語情報に適応させる方法はまだ検討されていない。
本稿では,変圧器ネットワークを基盤としたニューラルネットワークのバッテリ評価を行い,その後言語情報と組み合わせた。
公開されている苦情のデータセットの実験では、我々のモデルは、マクロF1を87.5%まで、大きなマージンで過去の最先端手法より優れていることが示された。
関連論文リスト
- A Unified Multi-Task Learning Architecture for Hate Detection Leveraging User-Based Information [23.017068553977982]
ヘイトスピーチ、攻撃的言語、攻撃性、人種差別、性差別、その他の虐待的言語は、ソーシャルメディアでよく見られる現象である。
ヘイトコンテンツを大規模にフィルタリングする人工知能(AI)ベースの介入が必要である。
本稿では,ユーザ内およびユーザ間情報を活用することで,英語のヘイトスピーチ識別を改善するユニークなモデルを提案する。
論文 参考訳(メタデータ) (2024-11-11T10:37:11Z) - Calibration of Transformer-based Models for Identifying Stress and
Depression in Social Media [0.0]
本研究はソーシャルメディアにおける抑うつ・ストレス検出の課題における最初の研究であり,トランスフォーマーモデルに余分な言語情報を注入する。
提案手法では,BERT(MentalBERT)モデルに入力として付与される複合埋め込みを生成するために,マルチモーダル適応ゲートを用いる。
提案手法を3つの公開データセットで検証し,言語機能とトランスフォーマーモデルの統合が性能の急上昇を示すことを示す。
論文 参考訳(メタデータ) (2023-05-26T10:19:04Z) - Hate Speech and Offensive Language Detection using an Emotion-aware
Shared Encoder [1.8734449181723825]
ヘイトスピーチと攻撃的言語検出に関する既存の研究は、事前学習されたトランスフォーマーモデルに基づいて有望な結果をもたらす。
本稿では,他コーパスから抽出した外的感情特徴を組み合わせたマルチタスク共同学習手法を提案する。
以上の結果から,感情的な知識が,データセット間のヘイトスピーチや攻撃的言語をより確実に識別する上で有効であることが示唆された。
論文 参考訳(メタデータ) (2023-02-17T09:31:06Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
本稿では,ニューラルネットワークの誤予測の原因となる,人間の認識可能な情報を含む対人摂動について述べる。
この人間の認識可能な情報の概念は、敵の摂動に関連する重要な特徴を説明できる。
論文 参考訳(メタデータ) (2022-05-30T18:04:57Z) - Dependency-based Mixture Language Models [53.152011258252315]
依存性に基づく混合言語モデルを紹介する。
より詳しくは、依存関係モデリングの新たな目的により、まずニューラルネットワークモデルを訓練する。
次に、前回の依存性モデリング確率分布と自己意図を混合することにより、次の確率を定式化する。
論文 参考訳(メタデータ) (2022-03-19T06:28:30Z) - Factorized Neural Transducer for Efficient Language Model Adaptation [51.81097243306204]
空白および語彙予測を分解し,ニューラルトランスデューサの因子化モデルを提案する。
この因子化は、音声認識のためのトランスデューサにスタンドアロン言語モデルの改善を移すことが期待できる。
提案した因子化ニューラルトランスデューサは、言語モデル適応にドメイン外テキストデータを使用する場合、15%から20%のWER改善が得られることを示す。
論文 参考訳(メタデータ) (2021-09-27T15:04:00Z) - I Beg to Differ: A study of constructive disagreement in online
conversations [15.581515781839656]
コンテンツ論争を含む7,425のwikipediaトークページ会話のコーパスを構築した。
モデレーターによる調停に不一致がエスカレートされるかどうかを予測するタスクを定義します。
我々は,様々なニューラルモデルを開発し,会話の構造を考慮すれば予測精度が向上することを示す。
論文 参考訳(メタデータ) (2021-01-26T16:36:43Z) - Effect of Word Embedding Models on Hate and Offensive Speech Detection [1.7403133838762446]
単語埋め込みモデルとニューラルネットワークアーキテクチャの両方が予測精度に与える影響について検討する。
まず、大規模なアラビア文字コーパスに複数の単語埋め込みモデルを訓練する。
検出タスク毎に、事前学習された単語埋め込みモデルを用いて、ニューラルネットワーク分類器を訓練する。
このタスクは多数の学習モデルをもたらし、徹底的な比較を可能にする。
論文 参考訳(メタデータ) (2020-11-23T02:43:45Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
我々は,「深層学習」手法で訓練された現代人工ニューラルネットワークが,人間の文処理の中心的な側面を模倣するかどうかを検討した。
ネットワークは、大きなコーパスで次の単語を予測するためにのみ訓練されたが、分析の結果、局所的および長距離の構文合意をうまく処理する特別なユニットが出現した。
我々は,複数の名詞の単数/複数状態における体系的な変化を伴う文中の数一致の違反を人間が検出する行動実験において,モデルの予測を検証した。
論文 参考訳(メタデータ) (2020-06-19T12:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。