論文の概要: Synthetic Expressions are Better Than Real for Learning to Detect Facial
Actions
- arxiv url: http://arxiv.org/abs/2010.10979v1
- Date: Wed, 21 Oct 2020 13:11:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 00:26:57.716811
- Title: Synthetic Expressions are Better Than Real for Learning to Detect Facial
Actions
- Title(参考訳): 顔の行動を検出するための学習のための合成表現
- Authors: Koichiro Niinuma, Itir Onal Ertugrul, Jeffrey F Cohn, L\'aszl\'o A
Jeni
- Abstract要約: 提案手法は,各映像フレームから顔の3次元形状を再構成し,その3次元メッシュを標準視に整列し,GANネットワークをトレーニングして,顔のアクションユニットによる新規画像の合成を行う。
このネットワークは、合成された表情を訓練し、実際の表情を訓練し、現在の最先端のアプローチを上回った。
- 参考スコア(独自算出の注目度): 4.4532095214807965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Critical obstacles in training classifiers to detect facial actions are the
limited sizes of annotated video databases and the relatively low frequencies
of occurrence of many actions. To address these problems, we propose an
approach that makes use of facial expression generation. Our approach
reconstructs the 3D shape of the face from each video frame, aligns the 3D mesh
to a canonical view, and then trains a GAN-based network to synthesize novel
images with facial action units of interest. To evaluate this approach, a deep
neural network was trained on two separate datasets: One network was trained on
video of synthesized facial expressions generated from FERA17; the other
network was trained on unaltered video from the same database. Both networks
used the same train and validation partitions and were tested on the test
partition of actual video from FERA17. The network trained on synthesized
facial expressions outperformed the one trained on actual facial expressions
and surpassed current state-of-the-art approaches.
- Abstract(参考訳): 顔の動きを検出するための分類器の訓練における重要な障害は、注釈付きビデオデータベースのサイズと、多くのアクションが発生する比較的低い頻度である。
これらの問題に対処するために,表情生成を利用したアプローチを提案する。
提案手法では,各映像フレームから顔の3d形状を再構成し,3dメッシュを正準ビューに調整し,ganベースのネットワークを訓練し,新たな顔動作ユニットを合成する。
このアプローチを評価するために、ディープニューラルネットワークは2つの異なるデータセットでトレーニングされた: 1つのネットワークはFERA17から生成された合成された表情のビデオでトレーニングされた。
両方のネットワークは同じ列車と検証パーティションを使用して、FERA17の実際のビデオのテストパーティションでテストされた。
このネットワークは、合成された表情を訓練し、実際の表情を訓練し、現在の最先端のアプローチを上回った。
関連論文リスト
- Video2StyleGAN: Encoding Video in Latent Space for Manipulation [63.03250800510085]
本稿では,顔映像のセマンティックな操作のために,顔映像をStyleGANの潜在空間に符号化する新しいネットワークを提案する。
提案手法は,リアルタイム(66fps)の高速化を実現しつつ,既存の単一画像手法よりも大幅に優れる。
論文 参考訳(メタデータ) (2022-06-27T06:48:15Z) - Learning to Deblur and Rotate Motion-Blurred Faces [43.673660541417995]
ニューラルネットワークを用いて、1つの画像と対応する顔の視線から3Dビデオ表現を再構成する。
次に、推定視線に対するカメラ視点と、エンコーダデコーダネットワークに入力されるぼやけた画像とを比較し、新しいカメラ視点でシャープフレームのビデオを生成する。
論文 参考訳(メタデータ) (2021-12-14T17:51:19Z) - LipSync3D: Data-Efficient Learning of Personalized 3D Talking Faces from
Video using Pose and Lighting Normalization [4.43316916502814]
音声からパーソナライズされた3D音声をアニメーションするビデオベースの学習フレームワークを提案する。
データサンプルの効率を大幅に改善する2つのトレーニング時間データ正規化を導入する。
提案手法は,現在最先端のオーディオ駆動型ビデオ再現ベンチマークを,リアリズム,リップシンク,視覚的品質スコアの点で上回っている。
論文 参考訳(メタデータ) (2021-06-08T08:56:40Z) - Image-to-Video Generation via 3D Facial Dynamics [78.01476554323179]
静止画像から様々な映像を生成するために多目的モデルであるFaceAnimeを提案する。
私たちのモデルは、顔ビデオや顔ビデオの予測など、さまざまなAR/VRやエンターテイメントアプリケーションに汎用的です。
論文 参考訳(メタデータ) (2021-05-31T02:30:11Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
In-theld でキャプチャした長いビデオシーケンスを用いて,持続的な感情認識のための最先端のディープラーニングアーキテクチャの適合性を検討する。
我々は,2D-CNNと長期記憶ユニットを組み合わせた畳み込みリカレントニューラルネットワークと,2D-CNNモデルの微調整時の重みを膨らませて構築した膨らませた3D-CNNモデルを開発した。
論文 参考訳(メタデータ) (2020-11-18T13:42:05Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
顔の表情の自動認識(FER)の最先端モデルは、非常に深いニューラルネットワークに基づいており、訓練には効果的だがかなり高価である。
私たちは、一般的なディープニューラルネットワークよりもはるかに少ないパラメータを持つ軽量ニューラルネットワークであるFaceChannelを形式化します。
我々は、私たちのモデルがFERの現在の最先端技術に匹敵するパフォーマンスを達成する方法を実証する。
論文 参考訳(メタデータ) (2020-09-15T09:25:37Z) - Head2Head++: Deep Facial Attributes Re-Targeting [6.230979482947681]
我々は,顔の3次元形状とGANを利用して,顔と頭部の再現作業のための新しいディープラーニングアーキテクチャを設計する。
駆動単眼動作から複雑な非剛性顔の動きを捉え,時間的に一貫した映像を合成する。
我々のシステムは、ほぼリアルタイムでエンドツーエンドの再現(18fps)を行う。
論文 参考訳(メタデータ) (2020-06-17T23:38:37Z) - DeepFaceFlow: In-the-wild Dense 3D Facial Motion Estimation [56.56575063461169]
DeepFaceFlowは、3D非剛体顔の流れを推定するための堅牢で高速で高精度なフレームワークである。
私たちのフレームワークは、2つの非常に大規模な顔ビデオデータセットでトレーニングされ、テストされました。
登録された画像に対して,60fpsで3次元フローマップを生成する。
論文 参考訳(メタデータ) (2020-05-14T23:56:48Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。