論文の概要: DeepFaceFlow: In-the-wild Dense 3D Facial Motion Estimation
- arxiv url: http://arxiv.org/abs/2005.07298v1
- Date: Thu, 14 May 2020 23:56:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 05:25:25.726697
- Title: DeepFaceFlow: In-the-wild Dense 3D Facial Motion Estimation
- Title(参考訳): deepfaceflow: 密集した3d顔の動き推定
- Authors: Mohammad Rami Koujan, Anastasios Roussos, Stefanos Zafeiriou
- Abstract要約: DeepFaceFlowは、3D非剛体顔の流れを推定するための堅牢で高速で高精度なフレームワークである。
私たちのフレームワークは、2つの非常に大規模な顔ビデオデータセットでトレーニングされ、テストされました。
登録された画像に対して,60fpsで3次元フローマップを生成する。
- 参考スコア(独自算出の注目度): 56.56575063461169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dense 3D facial motion capture from only monocular in-the-wild pairs of RGB
images is a highly challenging problem with numerous applications, ranging from
facial expression recognition to facial reenactment. In this work, we propose
DeepFaceFlow, a robust, fast, and highly-accurate framework for the dense
estimation of 3D non-rigid facial flow between pairs of monocular images. Our
DeepFaceFlow framework was trained and tested on two very large-scale facial
video datasets, one of them of our own collection and annotation, with the aid
of occlusion-aware and 3D-based loss function. We conduct comprehensive
experiments probing different aspects of our approach and demonstrating its
improved performance against state-of-the-art flow and 3D reconstruction
methods. Furthermore, we incorporate our framework in a full-head
state-of-the-art facial video synthesis method and demonstrate the ability of
our method in better representing and capturing the facial dynamics, resulting
in a highly-realistic facial video synthesis. Given registered pairs of images,
our framework generates 3D flow maps at ~60 fps.
- Abstract(参考訳): rgb画像の単眼内対のみからの高密度な3dモーションキャプチャは、表情認識から顔再現まで、多くの応用において非常に難しい問題である。
本研究では,1対の単眼画像間における3次元非剛性顔流の高密度推定のためのロバストで高速,高精度なフレームワークであるdeepfaceflowを提案する。
DeepFaceFlowフレームワークは、Occlusion-awareと3Dベースの損失関数の助けを借りて、2つの非常に大規模な顔ビデオデータセットをトレーニングし、テストしました。
提案手法の異なる側面を探索する総合的な実験を行い,最先端の流れと3次元再構成手法に対する性能向上を実証した。
さらに,本手法をフルヘッドの最先端顔映像合成法に組み込んで,顔のダイナミックスを表現・キャプチャし,高リアルな顔映像合成を実現する手法の能力を実証した。
登録された画像のペアが与えられたら、60fps近くで3dフローマップを生成します。
関連論文リスト
- G3FA: Geometry-guided GAN for Face Animation [14.488117084637631]
この制限に対処するために、顔アニメーション(G3FA)のための幾何学誘導型GANを導入する。
我々の新しいアプローチは、顔アニメーションモデルに2次元画像のみを用いて3次元情報を組み込むことを可能にした。
顔の再現モデルでは、動きのダイナミクスを捉えるために2次元の運動ワープを利用する。
論文 参考訳(メタデータ) (2024-08-23T13:13:24Z) - 3D Face Tracking from 2D Video through Iterative Dense UV to Image Flow [15.479024531161476]
本稿では,頂点ごとの高密度アライメントのための2次元アライメントネットワークを革新的に導入する新しいフェイストラッカーであるFlowFaceを提案する。
以前の作業とは異なり、FlowFaceは、弱い監視や合成データではなく、高品質な3Dスキャンアノテーションでトレーニングされている。
本手法は,カスタムベンチマークと公開ベンチマークの両方において,優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-15T14:20:07Z) - FitDiff: Robust monocular 3D facial shape and reflectance estimation using Diffusion Models [79.65289816077629]
拡散型3次元顔アバター生成モデルFitDiffを提案する。
本モデルでは,「近距離」2次元顔画像から抽出したアイデンティティ埋め込みを利用して,再現性のある顔アバターを高精度に生成する。
FitDiffは、顔認識の埋め込みを前提とした最初の3D LDMであり、一般的なレンダリングエンジンで使用可能な、ライティング可能な人間のアバターを再構築する。
論文 参考訳(メタデータ) (2023-12-07T17:35:49Z) - Fake It Without Making It: Conditioned Face Generation for Accurate 3D
Face Reconstruction [5.079602839359523]
本稿では,250Kのフォトリアリスティック画像とそれに対応する形状パラメータと深度マップの大規模な合成データセットを生成する手法について述べる。
人間の顔のFLAME 3D Morphable Model(3DMM)から採取した深度マップ上での安定拡散条件により,人種と性別のバランスがとれるようにデザインされた多様な形状の顔画像を生成することができる。
我々は、3Dの監督や手動の3Dアセット作成を必要とせずに、NoWベンチマーク上での競合性能を実現する、SynthFaceでトレーニングされたディープニューラルネットワークであるControlFaceを提案する。
論文 参考訳(メタデータ) (2023-07-25T16:42:06Z) - ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image
Collections [71.46546520120162]
単眼画像から動物体のような3D関節形状を推定することは、本質的に困難である。
本稿では,スパース画像コレクションから各物体の形状を再構築する自己教師型フレームワークARTIC3Dを提案する。
我々は、剛性部分変換の下で、描画された形状とテクスチャを微調整することで、現実的なアニメーションを作成する。
論文 参考訳(メタデータ) (2023-06-07T17:47:50Z) - Video2StyleGAN: Encoding Video in Latent Space for Manipulation [63.03250800510085]
本稿では,顔映像のセマンティックな操作のために,顔映像をStyleGANの潜在空間に符号化する新しいネットワークを提案する。
提案手法は,リアルタイム(66fps)の高速化を実現しつつ,既存の単一画像手法よりも大幅に優れる。
論文 参考訳(メタデータ) (2022-06-27T06:48:15Z) - AvatarMe++: Facial Shape and BRDF Inference with Photorealistic
Rendering-Aware GANs [119.23922747230193]
そこで本研究では,レンダリング可能な3次元顔形状とBRDFの再構成を,単一の"in-the-wild"画像から実現した最初の手法を提案する。
本手法は,1枚の低解像度画像から,高解像度の3次元顔の再構成を行う。
論文 参考訳(メタデータ) (2021-12-11T11:36:30Z) - Image-to-Video Generation via 3D Facial Dynamics [78.01476554323179]
静止画像から様々な映像を生成するために多目的モデルであるFaceAnimeを提案する。
私たちのモデルは、顔ビデオや顔ビデオの予測など、さまざまなAR/VRやエンターテイメントアプリケーションに汎用的です。
論文 参考訳(メタデータ) (2021-05-31T02:30:11Z) - Head2Head++: Deep Facial Attributes Re-Targeting [6.230979482947681]
我々は,顔の3次元形状とGANを利用して,顔と頭部の再現作業のための新しいディープラーニングアーキテクチャを設計する。
駆動単眼動作から複雑な非剛性顔の動きを捉え,時間的に一貫した映像を合成する。
我々のシステムは、ほぼリアルタイムでエンドツーエンドの再現(18fps)を行う。
論文 参考訳(メタデータ) (2020-06-17T23:38:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。