論文の概要: Unsupervised Multiple Choices Question Answering: Start Learning from
Basic Knowledge
- arxiv url: http://arxiv.org/abs/2010.11003v2
- Date: Mon, 1 Nov 2021 08:40:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 22:49:39.648645
- Title: Unsupervised Multiple Choices Question Answering: Start Learning from
Basic Knowledge
- Title(参考訳): 教師なし複数質問に対する回答:基礎知識から学び始める
- Authors: Chi-Liang Liu and Hung-yi Lee
- Abstract要約: 我々は、ほとんど教師なしの多重選択質問回答(MCQA)の可能性について検討する。
提案手法は RACE のベースラインアプローチよりも優れており,MC500 の教師あり学習手法と同等である。
- 参考スコア(独自算出の注目度): 75.7135212362517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the possibility of almost unsupervised Multiple
Choices Question Answering (MCQA). Starting from very basic knowledge, MCQA
model knows that some choices have higher probabilities of being correct than
the others. The information, though very noisy, guides the training of an MCQA
model. The proposed method is shown to outperform the baseline approaches on
RACE and even comparable with some supervised learning approaches on MC500.
- Abstract(参考訳): 本稿では,mcqa(unsupervised multiple choices question answering)の可能性について検討する。
MCQAモデルは、非常に基本的な知識から始めて、ある選択が他の選択よりも正しい確率が高いことを知っている。
この情報は、非常にうるさいが、MCQAモデルのトレーニングを導く。
提案手法は RACE のベースラインアプローチよりも優れており,MC500 の教師あり学習手法と同等である。
関連論文リスト
- Differentiating Choices via Commonality for Multiple-Choice Question Answering [54.04315943420376]
複数選択の質問応答は、正しい答えを選択するための貴重な手がかりを提供することができる。
既存のモデルでは、それぞれの選択を別々にランク付けし、他の選択によって提供されるコンテキストを見渡すことが多い。
本稿では,DCQAと呼ばれる共通性を識別・排除することで,選択を識別する新しいモデルを提案する。
論文 参考訳(メタデータ) (2024-08-21T12:05:21Z) - Artifacts or Abduction: How Do LLMs Answer Multiple-Choice Questions Without the Question? [15.308093827770474]
大規模言語モデル(LLM)が選択のみのプロンプトで複数選択質問応答(MCQA)を実行できるかどうかを探索する。
このプロンプトは11/12ケースで過半数のベースラインを上回り、精度は0.33まで向上する。
我々は、暗記、選択力学、質問推論について、深いブラックボックス分析を行う。
論文 参考訳(メタデータ) (2024-02-19T19:38:58Z) - Improving Machine Reading Comprehension with Single-choice Decision and
Transfer Learning [18.81256990043713]
MMRC (Multi-choice Machine Reading) は、与えられたパスと質問に基づいて、オプションのセットから正しい回答を選択することを目的としている。
SQuADやDreamといった他のRCタスクから知識を伝達するのは簡単ではない。
我々は、ある解答が正しいかどうかを識別するために二分分類を訓練することにより、複数選択から単一選択へ再構成する。
論文 参考訳(メタデータ) (2020-11-06T11:33:29Z) - Few-Shot Complex Knowledge Base Question Answering via Meta
Reinforcement Learning [55.08037694027792]
複雑な質問答え(CQA)は、知識ベース(KB)上の複雑な自然言語質問に答える。
従来のニューラルプログラム誘導(NPI)アプローチは、質問の種類が異なる場合、不均一なパフォーマンスを示す。
本稿では,CQAにおけるプログラム誘導のためのメタ強化学習手法を提案する。
論文 参考訳(メタデータ) (2020-10-29T18:34:55Z) - Retrieve, Program, Repeat: Complex Knowledge Base Question Answering via
Alternate Meta-learning [56.771557756836906]
本稿では,弱い監督からプログラマと交互に検索モデルを自動的に学習する手法を提案する。
本システムでは,知識ベースに対する複雑な質問応答を行う大規模タスクにおいて,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-10-29T18:28:16Z) - Unsupervised Multi-hop Question Answering by Question Generation [108.61653629883753]
MQA-QGは、人間のようなマルチホップトレーニングデータを生成する、教師なしのフレームワークである。
生成された学習データのみを用いて、教師付き学習性能の61%と83%を達成できる有能なマルチホップQAを訓練することができる。
論文 参考訳(メタデータ) (2020-10-23T19:13:47Z) - MS-Ranker: Accumulating Evidence from Potentially Correct Candidates for
Answer Selection [59.95429407899612]
そこで我々は,MS-Ranker という,新しい強化学習に基づくマルチステップランキングモデルを提案する。
我々は、候補の潜在的な正しさを明示的に考慮し、ゲーティング機構で証拠を更新する。
我々のモデルは、外部リソースに依存しない既存の手法を著しく上回ります。
論文 参考訳(メタデータ) (2020-10-10T10:36:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。