Online Conversation Disentanglement with Pointer Networks
- URL: http://arxiv.org/abs/2010.11080v1
- Date: Wed, 21 Oct 2020 15:43:07 GMT
- Title: Online Conversation Disentanglement with Pointer Networks
- Authors: Tao Yu, Shafiq Joty
- Abstract summary: We propose an end-to-end online framework for conversation disentanglement.
We design a novel way to embed the whole utterance that comprises timestamp, speaker, and message text.
Our experiments on the Ubuntu IRC dataset show that our method achieves state-of-the-art performance in both link and conversation prediction tasks.
- Score: 13.063606578730449
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Huge amounts of textual conversations occur online every day, where multiple
conversations take place concurrently. Interleaved conversations lead to
difficulties in not only following the ongoing discussions but also extracting
relevant information from simultaneous messages. Conversation disentanglement
aims to separate intermingled messages into detached conversations. However,
existing disentanglement methods rely mostly on handcrafted features that are
dataset specific, which hinders generalization and adaptability. In this work,
we propose an end-to-end online framework for conversation disentanglement that
avoids time-consuming domain-specific feature engineering. We design a novel
way to embed the whole utterance that comprises timestamp, speaker, and message
text, and proposes a custom attention mechanism that models disentanglement as
a pointing problem while effectively capturing inter-utterance interactions in
an end-to-end fashion. We also introduce a joint-learning objective to better
capture contextual information. Our experiments on the Ubuntu IRC dataset show
that our method achieves state-of-the-art performance in both link and
conversation prediction tasks.
Related papers
- CantTalkAboutThis: Aligning Language Models to Stay on Topic in Dialogues [4.427811636536821]
CantTalkAboutThis dataset consists of synthetic dialogues on a wide range of conversation topics from different domains.
Fine-tuning language models on this dataset helps make them resilient to deviating from the role assigned.
Preliminary observations suggest that training models on this dataset also enhance their performance on fine-grained instruction following tasks, including safety alignment.
arXiv Detail & Related papers (2024-04-04T22:31:58Z) - Conversation Chronicles: Towards Diverse Temporal and Relational
Dynamics in Multi-Session Conversations [9.249662593315541]
We introduce a new 1M multi-session dialogue dataset, Conversation Chronicles, for implementing a long-term conversation setup.
We show that dialogue episodes in Conversation Chronicles reflect those properties while maintaining coherent and consistent interactions.
We also propose a dialogue model, called ReBot, which consists of chronological summarization and dialogue generation modules.
arXiv Detail & Related papers (2023-10-20T11:06:21Z) - End-to-end Spoken Conversational Question Answering: Task, Dataset and
Model [92.18621726802726]
In spoken question answering, the systems are designed to answer questions from contiguous text spans within the related speech transcripts.
We propose a new Spoken Conversational Question Answering task (SCQA), aiming at enabling the systems to model complex dialogue flows.
Our main objective is to build the system to deal with conversational questions based on the audio recordings, and to explore the plausibility of providing more cues from different modalities with systems in information gathering.
arXiv Detail & Related papers (2022-04-29T17:56:59Z) - Topic-Aware Contrastive Learning for Abstractive Dialogue Summarization [41.75442239197745]
This work proposes two topic-aware contrastive learning objectives, namely coherence detection and sub-summary generation objectives.
Experiments on benchmark datasets demonstrate that the proposed simple method significantly outperforms strong baselines.
arXiv Detail & Related papers (2021-09-10T17:03:25Z) - Unsupervised Conversation Disentanglement through Co-Training [30.304609312675186]
We explore to train a conversation disentanglement model without referencing any human annotations.
Our method is built upon a deep co-training algorithm, which consists of two neural networks.
For the message-pair classifier, we enrich its training data by retrieving message pairs with high confidence.
arXiv Detail & Related papers (2021-09-07T17:05:18Z) - Disentangling Online Chats with DAG-Structured LSTMs [55.33014148383343]
DAG-LSTMs are a generalization of Tree-LSTMs that can handle directed acyclic dependencies.
We show that the novel model we propose achieves state of the art status on the task of recovering reply-to relations.
arXiv Detail & Related papers (2021-06-16T18:00:00Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
We propose a personalized hybrid matching network (PHMN) for context-response matching.
Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information.
We evaluate our model on two large datasets with user identification, i.e., personalized dialogue Corpus Ubuntu (P- Ubuntu) and personalized Weibo dataset (P-Weibo)
arXiv Detail & Related papers (2021-03-17T09:42:11Z) - Response Selection for Multi-Party Conversations with Dynamic Topic
Tracking [63.15158355071206]
We frame response selection as a dynamic topic tracking task to match the topic between the response and relevant conversation context.
We propose a novel multi-task learning framework that supports efficient encoding through large pretrained models.
Experimental results on the DSTC-8 Ubuntu IRC dataset show state-of-the-art results in response selection and topic disentanglement tasks.
arXiv Detail & Related papers (2020-10-15T14:21:38Z) - Multi-View Sequence-to-Sequence Models with Conversational Structure for
Abstractive Dialogue Summarization [72.54873655114844]
Text summarization is one of the most challenging and interesting problems in NLP.
This work proposes a multi-view sequence-to-sequence model by first extracting conversational structures of unstructured daily chats from different views to represent conversations.
Experiments on a large-scale dialogue summarization corpus demonstrated that our methods significantly outperformed previous state-of-the-art models via both automatic evaluations and human judgment.
arXiv Detail & Related papers (2020-10-04T20:12:44Z) - Topic-Aware Multi-turn Dialogue Modeling [91.52820664879432]
This paper presents a novel solution for multi-turn dialogue modeling, which segments and extracts topic-aware utterances in an unsupervised way.
Our topic-aware modeling is implemented by a newly proposed unsupervised topic-aware segmentation algorithm and Topic-Aware Dual-attention Matching (TADAM) Network.
arXiv Detail & Related papers (2020-09-26T08:43:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.