A P4 Data Plane for the Quantum Internet
- URL: http://arxiv.org/abs/2010.11263v1
- Date: Wed, 21 Oct 2020 19:37:23 GMT
- Title: A P4 Data Plane for the Quantum Internet
- Authors: Wojciech Kozlowski, Fernando Kuipers, Stephanie Wehner
- Abstract summary: A new -- quantum -- network stack will be needed to account for the fundamentally new properties of quantum entanglement.
In the non-quantum world, programmable data planes have broken the pattern of ossification of the protocol stack.
We demonstrate how we use P4$_16$ to explore abstractions and device architectures for quantum networks.
- Score: 68.97335984455059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum technology revolution brings with it the promise of a quantum
internet. A new -- quantum -- network stack will be needed to account for the
fundamentally new properties of quantum entanglement. The first realisations of
quantum networks are imminent and research interest in quantum network
protocols has started growing. In the non-quantum world, programmable data
planes have broken the pattern of ossification of the protocol stack and
enabled a new -- software-defined -- network software architecture. Similarly,
a programmable quantum data plane could pave the way for a software-defined
quantum network architecture. In this paper, we demonstrate how we use
P4$_{16}$ to explore abstractions and device architectures for quantum
networks.
Related papers
- Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum Internet: The Future of Internetworking [16.313110394211154]
The purpose of a quantum Internet is to enable applications that are fundamentally out of reach for the classical Internet.
This chapter aims to present the main concepts, challenges, and opportunities for research in quantum information, quantum computing and quantum networking.
arXiv Detail & Related papers (2023-04-30T23:17:47Z) - Quantum NETwork: from theory to practice [9.506954148435801]
We aim to provide an up-to-date review of the field of quantum networks from both theoretical and experimental perspectives.
We introduce a newly developed quantum network toolkit to facilitate the exploration and evaluation of innovative ideas.
arXiv Detail & Related papers (2022-12-02T15:05:25Z) - Packet Switching in Quantum Networks: A Path to Quantum Internet [0.0]
We introduce packet switching as a new paradigm for quantum data transmission in future and near-term quantum networks.
We propose a classical-quantum data frame structure and explore methods of frame generation and processing.
We present conceptual designs for a quantum reconfigurable optical add-drop multiplexer to realize the proposed transmission scheme.
arXiv Detail & Related papers (2022-05-16T08:39:05Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Designing a Quantum Network Protocol [0.0]
We present a quantum network protocol designed to enable end-to-end quantum communication.
One of the key challenges in near-term quantum technology is decoherence -- the gradual decay of quantum information.
We show that the protocol is able to deliver its service even in the face of significant losses due to decoherence.
arXiv Detail & Related papers (2020-10-06T09:41:14Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator.
We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories.
We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
arXiv Detail & Related papers (2020-09-25T01:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.