SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks
- URL: http://arxiv.org/abs/2009.12000v1
- Date: Fri, 25 Sep 2020 01:52:15 GMT
- Title: SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks
- Authors: Xiaoliang Wu, Alexander Kolar, Joaquin Chung, Dong Jin, Tian Zhong,
Rajkumar Kettimuthu, Martin Suchara
- Abstract summary: This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator.
We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories.
We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
- Score: 53.56179714852967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in quantum information science enabled the development of
quantum communication network prototypes and created an opportunity to study
full-stack quantum network architectures. This work develops SeQUeNCe, a
comprehensive, customizable quantum network simulator. Our simulator consists
of five modules: Hardware models, Entanglement Management protocols, Resource
Management, Network Management, and Application. This framework is suitable for
simulation of quantum network prototypes that capture the breadth of current
and future hardware technologies and protocols. We implement a comprehensive
suite of network protocols and demonstrate the use of SeQUeNCe by simulating a
photonic quantum network with nine routers equipped with quantum memories. The
simulation capabilities are illustrated in three use cases. We show the
dependence of quantum network throughput on several key hardware parameters and
study the impact of classical control message latency. We also investigate
quantum memory usage efficiency in routers and demonstrate that redistributing
memory according to anticipated load increases network capacity by 69.1% and
throughput by 6.8%. We design SeQUeNCe to enable comparisons of alternative
quantum network technologies, experiment planning, and validation and to aid
with new protocol design. We are releasing SeQUeNCe as an open source tool and
aim to generate community interest in extending it.
Related papers
- Simulators for Quantum Network Modelling: A Comprehensive Review [0.10742675209112622]
We present a review of, to the best of our knowledge, currently used toolkits for modeling quantum networks.
With these toolkits and standardized validation techniques, we can lay down the foundations for more accurate and reliable quantum network simulators.
arXiv Detail & Related papers (2024-08-21T21:07:46Z) - Reconfigurable Quantum Internet Service Provider [13.854695863568166]
We demonstrate the concept of quantum internet service provider (QISP)
We construct a reconfigurable QISP comprising both the quantum hardware and classical control software.
Our experiment demonstrates the robust capabilities of the QISP.
arXiv Detail & Related papers (2023-05-15T22:19:00Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Quantum NETwork: from theory to practice [9.506954148435801]
We aim to provide an up-to-date review of the field of quantum networks from both theoretical and experimental perspectives.
We introduce a newly developed quantum network toolkit to facilitate the exploration and evaluation of innovative ideas.
arXiv Detail & Related papers (2022-12-02T15:05:25Z) - Packet Switching in Quantum Networks: A Path to Quantum Internet [0.0]
We introduce packet switching as a new paradigm for quantum data transmission in future and near-term quantum networks.
We propose a classical-quantum data frame structure and explore methods of frame generation and processing.
We present conceptual designs for a quantum reconfigurable optical add-drop multiplexer to realize the proposed transmission scheme.
arXiv Detail & Related papers (2022-05-16T08:39:05Z) - Experimental demonstration of entanglement delivery using a quantum
network stack [1.3684924922685724]
We experimentally demonstrate, using remote solid-state quantum network nodes, a link layer and a physical layer protocol for entanglement-based quantum networks.
Results mark a clear transition from physics experiments to quantum communication systems.
arXiv Detail & Related papers (2021-11-22T16:39:33Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - A P4 Data Plane for the Quantum Internet [68.97335984455059]
A new -- quantum -- network stack will be needed to account for the fundamentally new properties of quantum entanglement.
In the non-quantum world, programmable data planes have broken the pattern of ossification of the protocol stack.
We demonstrate how we use P4$_16$ to explore abstractions and device architectures for quantum networks.
arXiv Detail & Related papers (2020-10-21T19:37:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.