論文の概要: Deep Learning for Distinguishing Normal versus Abnormal Chest
Radiographs and Generalization to Unseen Diseases
- arxiv url: http://arxiv.org/abs/2010.11375v2
- Date: Fri, 29 Oct 2021 22:20:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 06:24:02.756137
- Title: Deep Learning for Distinguishing Normal versus Abnormal Chest
Radiographs and Generalization to Unseen Diseases
- Title(参考訳): 正常と異常胸部X線像の識別のための深層学習と異常疾患への一般化
- Authors: Zaid Nabulsi, Andrew Sellergren, Shahar Jamshy, Charles Lau, Edward
Santos, Atilla P. Kiraly, Wenxing Ye, Jie Yang, Rory Pilgrim, Sahar
Kazemzadeh, Jin Yu, Sreenivasa Raju Kalidindi, Mozziyar Etemadi, Florencia
Garcia-Vicente, David Melnick, Greg S. Corrado, Lily Peng, Krish Eswaran,
Daniel Tse, Neeral Beladia, Yun Liu, Po-Hsuan Cameron Chen, Shravya Shetty
- Abstract要約: 我々は,CXRを正常または異常と分類するAIシステムを開発し,評価した。
以上の結果から,AIシステムは新たな患者数と異常に一般化することが示唆された。
- 参考スコア(独自算出の注目度): 7.93382570661604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chest radiography (CXR) is the most widely-used thoracic clinical imaging
modality and is crucial for guiding the management of cardiothoracic
conditions. The detection of specific CXR findings has been the main focus of
several artificial intelligence (AI) systems. However, the wide range of
possible CXR abnormalities makes it impractical to build specific systems to
detect every possible condition. In this work, we developed and evaluated an AI
system to classify CXRs as normal or abnormal. For development, we used a
de-identified dataset of 248,445 patients from a multi-city hospital network in
India. To assess generalizability, we evaluated our system using 6
international datasets from India, China, and the United States. Of these
datasets, 4 focused on diseases that the AI was not trained to detect: 2
datasets with tuberculosis and 2 datasets with coronavirus disease 2019. Our
results suggest that the AI system generalizes to new patient populations and
abnormalities. In a simulated workflow where the AI system prioritized abnormal
cases, the turnaround time for abnormal cases reduced by 7-28%. These results
represent an important step towards evaluating whether AI can be safely used to
flag cases in a general setting where previously unseen abnormalities exist.
- Abstract(参考訳): 胸部x線撮影 (cxr) は最も広く用いられている胸部画像診断法であり, 循環器疾患の管理に重要である。
特定のCXR発見の検出は、いくつかの人工知能(AI)システムの主要な焦点となっている。
しかし、CXR異常の可能性は幅広いため、あらゆる可能な状態を検出する特定のシステムを構築することは不可能である。
本研究では,CXRを正常または異常と分類するAIシステムを開発し,評価した。
開発には,インドの多都市病院ネットワークから248,445人の身元不明データセットを用いた。
汎用性を評価するために,インド,中国,米国からの6つの国際データセットを用いて評価を行った。
これらのデータセットのうち4つは、AIが検出するために訓練されていない病気に焦点を当てている。
以上の結果から,AIシステムは新たな患者数と異常に一般化することが示唆された。
aiシステムが異常症例を優先するシミュレーションワークフローでは、異常症例の転回時間を7-28%削減した。
これらの結果は、これまで見えなかった異常が存在する一般的な状況において、AIがケースのフラグ付けに安全に使用できるかどうかを評価するための重要なステップである。
関連論文リスト
- AI-based Anomaly Detection for Clinical-Grade Histopathological Diagnostics [24.833696455985795]
臨床では、病気はほとんどないが、ほとんどの疾患は少ない。
現在のAIモデルは、これらの病気を見落としたり、分類ミスしたりする。
そこで本研究では,より頻度の低い疾患も検出するために,一般的な疾患からのトレーニングデータのみを必要とする深層異常検出手法を提案する。
論文 参考訳(メタデータ) (2024-06-21T04:59:19Z) - Artificial intelligence for abnormality detection in high volume neuroimaging: a systematic review and meta-analysis [0.5934394862891423]
神経画像における異常を検出する人工知能(AI)モデルを評価するほとんどの研究は、非表現的な患者コホートで試験されている。
目的は、診断テストの精度を判定し、第一線高ボリュームのニューロイメージングタスクを実行するAIモデルの使用を支持する証拠を要約することであった。
論文 参考訳(メタデータ) (2024-05-09T10:12:17Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
460胸部X線で冠状動脈カルシウム(CAC)スコアを予測する深層学習アルゴリズムを開発した。
AICACモデルの診断精度は, 曲線下領域(AUC)で評価された。
論文 参考訳(メタデータ) (2024-03-27T16:56:14Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - minoHealth.ai: A Clinical Evaluation Of Deep Learning Systems For the
Diagnosis of Pleural Effusion and Cardiomegaly In Ghana, Vietnam and the
United States of America [0.0]
我々は、私のminoHealth AI Labsを開発したminoHealth.aiシステムが、心内膜および胸膜灌流の診断において、いかにうまく機能するかを評価する。
ガーナ、ベトナム、米国からの胸部X線、そしてガーナで働く放射線学者と比べて、AIシステムがいかにうまく機能するか。
MinoHealth.aiはAUC-ROCが0.9と0.97であり、AUC-ROCは0.77から0.86であった。
論文 参考訳(メタデータ) (2022-10-31T20:12:41Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
深層学習モデルは、胸部X線から新型コロナウイルスを識別するために開発された。
オープンソースデータのトレーニングやテストでは,結果は異例です。
データ分析とモデル評価は、人気のあるオープンソースデータセットであるCOVIDxが実際の臨床問題を代表していないことを示している。
論文 参考訳(メタデータ) (2021-09-14T10:59:11Z) - A clinical validation of VinDr-CXR, an AI system for detecting abnormal
chest radiographs [0.0]
X線スキャンで異常を検出するためのAIベースのシステムを検証するメカニズムを実証する。
このシステムは、胸部X線上の異常を検出するためのF1スコア(リコールのハーモニック平均と精度-0.653 CI 0.635, 0.671)を達成する。
論文 参考訳(メタデータ) (2021-04-06T02:53:35Z) - Clinical prediction system of complications among COVID-19 patients: a
development and validation retrospective multicentre study [0.3569980414613667]
2020年4月1日から4月30日までにUAEのアブダビ(AD)で18施設に入院した3,352人の患者から収集したデータを用いた。
最初の24時間に収集されたデータを用いて、機械学習ベースの予後システムは、入院中に7つの合併症を発生させるリスクを予測する。
このシステムは、すべての合併症と両方の領域にわたって良好な精度を達成する。
論文 参考訳(メタデータ) (2020-11-28T18:16:23Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。