論文の概要: Artificial intelligence for abnormality detection in high volume neuroimaging: a systematic review and meta-analysis
- arxiv url: http://arxiv.org/abs/2405.05658v1
- Date: Thu, 9 May 2024 10:12:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 13:42:37.625650
- Title: Artificial intelligence for abnormality detection in high volume neuroimaging: a systematic review and meta-analysis
- Title(参考訳): 高容積神経画像における異常検出のための人工知能 : 体系的レビューとメタ分析
- Authors: Siddharth Agarwal, David A. Wood, Mariusz Grzeda, Chandhini Suresh, Munaib Din, James Cole, Marc Modat, Thomas C Booth,
- Abstract要約: 神経画像における異常を検出する人工知能(AI)モデルを評価するほとんどの研究は、非表現的な患者コホートで試験されている。
目的は、診断テストの精度を判定し、第一線高ボリュームのニューロイメージングタスクを実行するAIモデルの使用を支持する証拠を要約することであった。
- 参考スコア(独自算出の注目度): 0.5934394862891423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: Most studies evaluating artificial intelligence (AI) models that detect abnormalities in neuroimaging are either tested on unrepresentative patient cohorts or are insufficiently well-validated, leading to poor generalisability to real-world tasks. The aim was to determine the diagnostic test accuracy and summarise the evidence supporting the use of AI models performing first-line, high-volume neuroimaging tasks. Methods: Medline, Embase, Cochrane library and Web of Science were searched until September 2021 for studies that temporally or externally validated AI capable of detecting abnormalities in first-line CT or MR neuroimaging. A bivariate random-effects model was used for meta-analysis where appropriate. PROSPERO: CRD42021269563. Results: Only 16 studies were eligible for inclusion. Included studies were not compromised by unrepresentative datasets or inadequate validation methodology. Direct comparison with radiologists was available in 4/16 studies. 15/16 had a high risk of bias. Meta-analysis was only suitable for intracranial haemorrhage detection in CT imaging (10/16 studies), where AI systems had a pooled sensitivity and specificity 0.90 (95% CI 0.85 - 0.94) and 0.90 (95% CI 0.83 - 0.95) respectively. Other AI studies using CT and MRI detected target conditions other than haemorrhage (2/16), or multiple target conditions (4/16). Only 3/16 studies implemented AI in clinical pathways, either for pre-read triage or as post-read discrepancy identifiers. Conclusion: The paucity of eligible studies reflects that most abnormality detection AI studies were not adequately validated in representative clinical cohorts. The few studies describing how abnormality detection AI could impact patients and clinicians did not explore the full ramifications of clinical implementation.
- Abstract(参考訳): 目的: 神経画像における異常を検出する人工知能(AI)モデルを評価するほとんどの研究は、非表現的な患者コホートでテストされるか、十分に検証されていないかのいずれかであり、現実のタスクに対する一般化性は低い。
目的は、診断テストの精度を判定し、第一線高ボリュームのニューロイメージングタスクを実行するAIモデルの使用を支持する証拠を要約することであった。
方法:Medline、Embase、Cochraneライブラリ、Web of Scienceは2021年9月まで検索され、時間的または外部的に検証されたAIが、一線CTやMR画像の異常を検知できる研究のために検索された。
二変量ランダム効果モデルを用いてメタ分析を行った。
CRD42021269563。
結果: 対象は16例のみであった。
追加された研究は、表現できないデータセットや不十分な検証手法によって妥協されなかった。
放射線学者との直接比較は4/16の研究で行われた。
15/16は偏見のリスクが高い。
メタアナリシスはCT画像における頭蓋内出血の検出にのみ適しており、10/16の研究では、AIシステムはそれぞれ0.90(95% CI 0.85 - 0.94)と0.90(95% CI 0.83 - 0.95)の感度と特異性を持っていた。
CTとMRIを用いた他のAI研究は、出血(2/16)または複数のターゲット条件(4/16)以外のターゲット条件を検出した。
3/16研究のみがAIを臨床経路に導入した。
結論: 対象とする研究の質は, 代表的な臨床コホートにおいて, ほとんどの異常検出AI研究が適切に検証されなかったことを反映している。
異常検出AIが患者や臨床医にどのように影響するかを示す数少ない研究は、臨床実践の完全な影響を探求しなかった。
関連論文リスト
- AI-based Anomaly Detection for Clinical-Grade Histopathological Diagnostics [24.833696455985795]
臨床では、病気はほとんどないが、ほとんどの疾患は少ない。
現在のAIモデルは、これらの病気を見落としたり、分類ミスしたりする。
そこで本研究では,より頻度の低い疾患も検出するために,一般的な疾患からのトレーニングデータのみを必要とする深層異常検出手法を提案する。
論文 参考訳(メタデータ) (2024-06-21T04:59:19Z) - The Limits of Fair Medical Imaging AI In The Wild [43.97266228706059]
医療用AIが人口統計エンコーディングをどのように利用するかを検討する。
医療画像AIは、疾患分類において、人口動態のショートカットを利用することを確認した。
人口統計属性のエンコーディングが少ないモデルは、しばしば「グローバルに最適」であることがわかった。
論文 参考訳(メタデータ) (2023-12-11T18:59:50Z) - Unsupervised Anomaly Detection using Aggregated Normative Diffusion [46.24703738821696]
教師なし異常検出は、より広い範囲の異常を識別する可能性がある。
既存の最先端のUADアプローチは、様々な種類の異常に対してうまく一般化しない。
Aggregated Normative Diffusion (ANDi) という新しいUAD法を提案する。
論文 参考訳(メタデータ) (2023-12-04T14:02:56Z) - Artificial intelligence in digital pathology: a diagnostic test accuracy
systematic review and meta-analysis [0.3957768262206625]
この体系的なレビューとメタアナリシスは、あらゆる種類の人工知能を用いた診断精度の研究を含む。
包含物として100の研究が同定され、152,000枚以上のスライド画像 (WSI) に相当し、多くの病型を表わした。
これらの研究では、平均感度は96.3%(CI 94.1-97.7)、平均特異度は93.3%(CI 90.5-95.4)であった。
全体として、AIはWSIに適用した場合に適切な精度を提供するが、そのパフォーマンスをより厳格に評価する必要がある。
論文 参考訳(メタデータ) (2023-06-13T00:45:54Z) - Artificial Intelligence in Ovarian Cancer Histopathology: A Systematic
Review [1.832300121391956]
方法: PubMed, Scopus, Web of Science, CENTRAL, WHO-ICTRPの検索を行った。
PROBASTを用いてバイアスのリスクを評価した。
37の診断モデル、22の予後モデル、21の診断関連結果を含む80の関心モデルがあった。
すべてのモデルが全体として偏見のリスクが高いか、あるいは不明確であることが判明し、ほとんどの研究は分析において偏見のリスクが高いことが判明した。
論文 参考訳(メタデータ) (2023-03-31T12:26:29Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
深層学習モデルは、2011年1月から2018年4月までに収集された非外傷性ICHを用いた1868個のNCCTスキャンを用いて開発された。
診断成績は臨床医の成績と比較した。
臨床医は, システム拡張による特定の出血エチオロジーの感度, 特異性, 精度を著しく改善した。
論文 参考訳(メタデータ) (2023-02-02T08:45:17Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
本研究では, MRI(sagittal magnetic resonance images)における疾患の存在を自動的に検出するシステムを開発する。
矢状面MRIは一般的には使われていないが、この研究は、少なくとも、ADを早期に同定する他の平面からのMRIと同じくらい効果があることを証明した。
本研究は,これらの分野でDLモデルを構築できることを実証する一方,TLは少ない例でタスクを完了するための必須のツールである。
論文 参考訳(メタデータ) (2021-05-18T11:37:57Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。