論文の概要: Self-Supervised Shadow Removal
- arxiv url: http://arxiv.org/abs/2010.11619v1
- Date: Thu, 22 Oct 2020 11:33:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 05:23:13.885107
- Title: Self-Supervised Shadow Removal
- Title(参考訳): 自己監督型シャドウ除去
- Authors: Florin-Alexandru Vasluianu and Andres Romero and Luc Van Gool and Radu
Timofte
- Abstract要約: 条件付きマスクを用いた自己教師付き学習による教師なしシングルイメージシャドウ除去ソリューションを提案する。
既存の文献とは対照的に、一対のシャドウとシャドウのない画像は必要とせず、自己スーパービジョンに頼り、画像にシャドウを取り除いて追加するために深いモデルを共同で学習する。
- 参考スコア(独自算出の注目度): 130.6657167667636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shadow removal is an important computer vision task aiming at the detection
and successful removal of the shadow produced by an occluded light source and a
photo-realistic restoration of the image contents. Decades of re-search
produced a multitude of hand-crafted restoration techniques and, more recently,
learned solutions from shad-owed and shadow-free training image pairs. In this
work,we propose an unsupervised single image shadow removal solution via
self-supervised learning by using a conditioned mask. In contrast to existing
literature, we do not require paired shadowed and shadow-free images, instead
we rely on self-supervision and jointly learn deep models to remove and add
shadows to images. We validate our approach on the recently introduced ISTD and
USR datasets. We largely improve quantitatively and qualitatively over the
compared methods and set a new state-of-the-art performance in single image
shadow removal.
- Abstract(参考訳): シャドウ除去は、遮蔽光源によって生成されたシャドウの検出と除去、および画像内容のフォトリアリスティックな復元を目的とした重要なコンピュータビジョンタスクである。
何度も手作りの修復技術を生み出し、最近では陰影のない訓練画像のペアから解法を学んだ。
本研究では,条件付きマスクを用いた自己教師付き学習による教師なしシングルイメージシャドウ除去ソリューションを提案する。
既存の文献とは対照的に、一対のシャドウとシャドウのない画像は必要とせず、自己スーパービジョンに頼り、画像にシャドウを取り除いて追加するために深いモデルを共同で学習する。
我々は最近導入されたISTDデータセットとUSRデータセットに対するアプローチを検証する。
比較手法よりも定量的,質的に大きく改善し,単一画像シャドウ除去における新しい最先端性能を設定した。
関連論文リスト
- Single-Image Shadow Removal Using Deep Learning: A Comprehensive Survey [78.84004293081631]
影のパターンは任意で変化しており、しばしば非常に複雑な痕跡構造を持つ。
影による劣化は空間的に不均一であり、照度と影と非陰影領域間の色に矛盾が生じている。
この分野での最近の開発は、主にディープラーニングベースのソリューションによって進められている。
論文 参考訳(メタデータ) (2024-07-11T20:58:38Z) - Progressive Recurrent Network for Shadow Removal [99.1928825224358]
シングルイメージのシャドー削除は、まだ解決されていない重要なタスクである。
既存のディープラーニングベースのアプローチのほとんどは、シャドウを直接削除しようとするが、シャドウをうまく扱えない。
本稿では,影を段階的に除去する簡易かつ効果的なプログレッシブ・リカレント・ネットワーク(PRNet)を提案する。
論文 参考訳(メタデータ) (2023-11-01T11:42:45Z) - ShadowDiffusion: When Degradation Prior Meets Diffusion Model for Shadow
Removal [74.86415440438051]
画像と劣化先行情報を統合した統合拡散フレームワークを提案する。
SRDデータセット上でのPSNRは31.69dBから34.73dBへと大幅に向上した。
論文 参考訳(メタデータ) (2022-12-09T07:48:30Z) - ShaDocNet: Learning Spatial-Aware Tokens in Transformer for Document
Shadow Removal [53.01990632289937]
本稿では,文書陰影除去のためのトランスフォーマーモデルを提案する。
シャドウとシャドウフリーの両方の領域で、シャドウコンテキストエンコーディングとデコードを使用する。
論文 参考訳(メタデータ) (2022-11-30T01:46:29Z) - Estimating Reflectance Layer from A Single Image: Integrating
Reflectance Guidance and Shadow/Specular Aware Learning [66.36104525390316]
本稿では,2段階の学習手法を提案し,その課題に対処するためのリフレクタンスガイダンスとシャドウ/スペック・アウェア(S-Aware)ネットワークを提案する。
第1段階では、新規な損失の制約を伴い、影や特異性のない初期反射層を得る。
第二段改良において、反射層が影や特異点に依存しないようにさらに強制するために、入力画像と反射像を区別するS-Awareネットワークを導入する。
論文 参考訳(メタデータ) (2022-11-27T07:26:41Z) - Unsupervised Portrait Shadow Removal via Generative Priors [37.46753287881341]
トレーニングデータなしで肖像画の影を除去するための最初の教師なし手法を提案する。
私たちのキーとなるアイデアは、既成のStyleGAN2に埋め込まれた生成的な顔の事前情報を活用することです。
私たちのアプローチは、ポートレートタトゥーの削除や透かしの除去にも適用できます。
論文 参考訳(メタデータ) (2021-08-07T15:09:36Z) - Learning from Synthetic Shadows for Shadow Detection and Removal [43.53464469097872]
最近のシャドウ除去は、実対のシャドウ/シャドウフリーまたはシャドウ/シャドウ/マスクイメージデータセット上のすべてのトレイン畳み込みニューラルネットワーク(CNN)にアプローチしている。
今回紹介するSynShadowは、新しい大規模合成影/影なし/マット画像トリプレットデータセットと合成パイプラインである。
論文 参考訳(メタデータ) (2021-01-05T18:56:34Z) - Physics-based Shadow Image Decomposition for Shadow Removal [36.41558227710456]
陰影除去のための新しい深層学習法を提案する。
影形成の物理モデルにインスパイアされ、線形照明変換を用いて画像内の影効果をモデル化する。
最も困難なシャドウ除去データセットでフレームワークをトレーニングし、テストします。
論文 参考訳(メタデータ) (2020-12-23T23:06:38Z) - From Shadow Segmentation to Shadow Removal [34.762493656937366]
シャドウとシャドウフリーの画像のペアの必要性は、シャドウ除去データセットのサイズと多様性を制限している。
本研究では,影画像から抽出した陰影と非陰影パッチのみを用いて,陰影除去法を提案する。
論文 参考訳(メタデータ) (2020-08-01T14:00:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。