論文の概要: ShaDocNet: Learning Spatial-Aware Tokens in Transformer for Document
Shadow Removal
- arxiv url: http://arxiv.org/abs/2211.16675v1
- Date: Wed, 30 Nov 2022 01:46:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 16:56:59.963287
- Title: ShaDocNet: Learning Spatial-Aware Tokens in Transformer for Document
Shadow Removal
- Title(参考訳): ShaDocNet: ドキュメントシャドウ除去のためのトランスフォーマーにおける空間認識トークンの学習
- Authors: Xuhang Chen, Xiaodong Cun, Chi-Man Pun, Shuqiang Wang
- Abstract要約: 本稿では,文書陰影除去のためのトランスフォーマーモデルを提案する。
シャドウとシャドウフリーの両方の領域で、シャドウコンテキストエンコーディングとデコードを使用する。
- 参考スコア(独自算出の注目度): 53.01990632289937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shadow removal improves the visual quality and legibility of digital copies
of documents. However, document shadow removal remains an unresolved subject.
Traditional techniques rely on heuristics that vary from situation to
situation. Given the quality and quantity of current public datasets, the
majority of neural network models are ill-equipped for this task. In this
paper, we propose a Transformer-based model for document shadow removal that
utilizes shadow context encoding and decoding in both shadow and shadow-free
regions. Additionally, shadow detection and pixel-level enhancement are
included in the whole coarse-to-fine process. On the basis of comprehensive
benchmark evaluations, it is competitive with state-of-the-art methods.
- Abstract(参考訳): シャドウ除去は、文書のデジタルコピーの視覚的品質と可視性を改善する。
しかし、文書シャドーの削除は未解決のままである。
伝統的な手法は状況によって異なるヒューリスティックに依存する。
現在の公開データセットの品質と量を考えると、ほとんどのニューラルネットワークモデルは、このタスクに不適当である。
本稿では,シャドウ領域とシャドウ領域の両方でシャドウコンテキストエンコーディングとデコードを利用する,ドキュメントシャドウ除去のためのトランスフォーマモデルを提案する。
さらに、粗大なプロセス全体に含まれる影検出と画素レベルの強調も含んでいる。
包括的なベンチマーク評価に基づいて、最先端の手法と競合する。
関連論文リスト
- Single-Image Shadow Removal Using Deep Learning: A Comprehensive Survey [78.84004293081631]
影のパターンは任意で変化しており、しばしば非常に複雑な痕跡構造を持つ。
影による劣化は空間的に不均一であり、照度と影と非陰影領域間の色に矛盾が生じている。
この分野での最近の開発は、主にディープラーニングベースのソリューションによって進められている。
論文 参考訳(メタデータ) (2024-07-11T20:58:38Z) - Progressive Recurrent Network for Shadow Removal [99.1928825224358]
シングルイメージのシャドー削除は、まだ解決されていない重要なタスクである。
既存のディープラーニングベースのアプローチのほとんどは、シャドウを直接削除しようとするが、シャドウをうまく扱えない。
本稿では,影を段階的に除去する簡易かつ効果的なプログレッシブ・リカレント・ネットワーク(PRNet)を提案する。
論文 参考訳(メタデータ) (2023-11-01T11:42:45Z) - High-Resolution Document Shadow Removal via A Large-Scale Real-World Dataset and A Frequency-Aware Shadow Erasing Net [42.32958776152137]
ドキュメントをカジュアルな機器でキャプチャすると、シャドウが発生することが多い。
自然なシャドウ除去のアルゴリズムとは異なり、文書シャドウ除去のアルゴリズムはフォントや数字の詳細を高精細な入力で保存する必要がある。
より大規模な実世界のデータセットと、慎重に設計された周波数対応ネットワークを介して、高解像度のドキュメントシャドウ除去を処理します。
論文 参考訳(メタデータ) (2023-08-27T22:45:24Z) - DocDeshadower: Frequency-Aware Transformer for Document Shadow Removal [36.182923899021496]
現在のシャドウ除去技術は、さまざまなシャドウインテンシティの扱いやドキュメントの保存において制限に直面している。
ラプラシアンピラミッド上に構築された新しい多周波トランスフォーマーモデルDocDeshadowerを提案する。
DocDeshadowerは最先端の手法に比べて優れた性能を示している。
論文 参考訳(メタデータ) (2023-07-28T05:35:37Z) - Leveraging Inpainting for Single-Image Shadow Removal [29.679542372017373]
本研究では,画像インペイントデータセットにおける影除去ネットワークの事前学習により,影の残差を著しく低減できることを示す。
単純エンコーダ・デコーダネットワークは、10%のシャドウとシャドウフリーの画像ペアで、最先端の手法で競合する復元品質を得る。
これらの観測から着想を得て,影の除去と画像の塗装を両立させる適応融合タスクとして,影の除去を定式化する。
論文 参考訳(メタデータ) (2023-02-10T16:21:07Z) - ShadowFormer: Global Context Helps Image Shadow Removal [41.742799378751364]
シャドウ領域と非シャドウ領域のグローバルな文脈的相関を利用して、ディープシャドウ除去モデルを構築することは依然として困難である。
そこで我々はまず、ShandowFormerと呼ばれる新しいトランスフォーマーベースのネットワークを導出するRetinexベースのシャドウモデルを提案する。
グローバル情報を階層的にキャプチャするために,マルチスケールチャネルアテンションフレームワークが使用される。
本稿では,影と非陰影領域のコンテキスト相関を効果的にモデル化するために,影の相互作用を考慮したSIM(Shadow-Interaction Module)を提案する。
論文 参考訳(メタデータ) (2023-02-03T10:54:52Z) - Shadow Removal by High-Quality Shadow Synthesis [78.56549207362863]
HQSSでは、擬似画像を合成するためにシャドウ機能エンコーダとジェネレータを使用している。
HQSSは、ISTDデータセット、ビデオシャドウ除去データセット、SRDデータセットの最先端メソッドよりも優れたパフォーマンスを発揮する。
論文 参考訳(メタデータ) (2022-12-08T06:52:52Z) - Shadow-Aware Dynamic Convolution for Shadow Removal [80.82708225269684]
シャドウ領域と非シャドウ領域間の相互依存を分離するための新しいシャドウ・アウェア・ダイナミック・コンボリューション(SADC)モジュールを提案する。
我々のSADCは、非シャドウ領域の色マッピングが学習しやすいという事実に触発され、軽量な畳み込みモジュールで非シャドウ領域を処理する。
我々は,非シャドウ地域からシャドウ地域への情報フローを強化するために,新しいコンボリューション内蒸留損失を開発した。
論文 参考訳(メタデータ) (2022-05-10T14:00:48Z) - Learning from Synthetic Shadows for Shadow Detection and Removal [43.53464469097872]
最近のシャドウ除去は、実対のシャドウ/シャドウフリーまたはシャドウ/シャドウ/マスクイメージデータセット上のすべてのトレイン畳み込みニューラルネットワーク(CNN)にアプローチしている。
今回紹介するSynShadowは、新しい大規模合成影/影なし/マット画像トリプレットデータセットと合成パイプラインである。
論文 参考訳(メタデータ) (2021-01-05T18:56:34Z) - Self-Supervised Shadow Removal [130.6657167667636]
条件付きマスクを用いた自己教師付き学習による教師なしシングルイメージシャドウ除去ソリューションを提案する。
既存の文献とは対照的に、一対のシャドウとシャドウのない画像は必要とせず、自己スーパービジョンに頼り、画像にシャドウを取り除いて追加するために深いモデルを共同で学習する。
論文 参考訳(メタデータ) (2020-10-22T11:33:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。