Conversion and Implementation of State-of-the-Art Deep Learning
Algorithms for the Classification of Diabetic Retinopathy
- URL: http://arxiv.org/abs/2010.11692v1
- Date: Wed, 7 Oct 2020 20:42:14 GMT
- Title: Conversion and Implementation of State-of-the-Art Deep Learning
Algorithms for the Classification of Diabetic Retinopathy
- Authors: Mihir Rao, Michelle Zhu, Tianyang Wang
- Abstract summary: Inception-V3, VGG19, VGG16, ResNet50, and InceptionResNetV2 are evaluated through experiments.
They categorize medical images into five different classes based on DR severity.
Experimental results indicate that the ResNet50 has top performance for binary classification.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diabetic retinopathy (DR) is a retinal microvascular condition that emerges
in diabetic patients. DR will continue to be a leading cause of blindness
worldwide, with a predicted 191.0 million globally diagnosed patients in 2030.
Microaneurysms, hemorrhages, exudates, and cotton wool spots are common signs
of DR. However, they can be small and hard for human eyes to detect. Early
detection of DR is crucial for effective clinical treatment. Existing methods
to classify images require much time for feature extraction and selection, and
are limited in their performance. Convolutional Neural Networks (CNNs), as an
emerging deep learning (DL) method, have proven their potential in image
classification tasks. In this paper, comprehensive experimental studies of
implementing state-of-the-art CNNs for the detection and classification of DR
are conducted in order to determine the top performing classifiers for the
task. Five CNN classifiers, namely Inception-V3, VGG19, VGG16, ResNet50, and
InceptionResNetV2, are evaluated through experiments. They categorize medical
images into five different classes based on DR severity. Data augmentation and
transfer learning techniques are applied since annotated medical images are
limited and imbalanced. Experimental results indicate that the ResNet50
classifier has top performance for binary classification and that the
InceptionResNetV2 classifier has top performance for multi-class DR
classification.
Related papers
- Enhancing Diabetic Retinopathy Detection with CNN-Based Models: A Comparative Study of UNET and Stacked UNET Architectures [0.0]
Diabetic Retinopathy DR is a severe complication of diabetes. Damaged or abnormal blood vessels can cause loss of vision.
The need for massive screening of a large population of diabetic patients has generated an interest in a computer-aided fully automatic diagnosis of DR.
Deep learning frameworks, particularly convolutional neural networks CNNs, have shown great interest and promise in detecting DR by analyzing retinal images.
arXiv Detail & Related papers (2024-11-02T14:02:45Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Improving Classification of Retinal Fundus Image Using Flow Dynamics
Optimized Deep Learning Methods [0.0]
Diabetic Retinopathy (DR) refers to a barrier that takes place in diabetes mellitus damaging the blood vessel network present in the retina.
It can take some time to perform a DR diagnosis using color fundus pictures because experienced clinicians are required to identify the tumors in the imagery used to identify the illness.
arXiv Detail & Related papers (2023-04-29T16:11:34Z) - Blindness (Diabetic Retinopathy) Severity Scale Detection [0.0]
Diabetic retinopathy (DR) is a severe complication of diabetes that can cause permanent blindness.
Timely diagnosis and treatment of DR are critical to avoid total loss of vision.
We propose a novel deep learning based method for automatic screening of retinal fundus images.
arXiv Detail & Related papers (2021-10-04T11:31:15Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Learning Discriminative Representations for Fine-Grained Diabetic
Retinopathy Grading [6.129288755571804]
Diabetic retinopathy is one of the leading causes of blindness.
To determine the disease severity levels, ophthalmologists need to focus on the discriminative parts of the fundus images.
arXiv Detail & Related papers (2020-11-04T04:16:55Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - DcardNet: Diabetic Retinopathy Classification at Multiple Levels Based
on Structural and Angiographic Optical Coherence Tomography [1.9262162668141078]
A convolutional neural network (CNN) based method is proposed to fulfill a diabetic retinopathy (DR) classification framework.
A densely and continuously connected neural network with adaptive rate dropout (DcardNet) is designed for the DR classification.
Three separate classification levels are generated for each case based on the International Clinical Diabetic Retinopathy scale.
arXiv Detail & Related papers (2020-06-09T19:44:10Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z) - 1-D Convlutional Neural Networks for the Analysis of Pupil Size
Variations in Scotopic Conditions [79.71065005161566]
1-D convolutional neural network models are trained for classification of short-range sequences.
Model provides prediction with high average accuracy on a hold out test set.
arXiv Detail & Related papers (2020-02-06T17:25:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.