Learning Discriminative Representations for Fine-Grained Diabetic
Retinopathy Grading
- URL: http://arxiv.org/abs/2011.02120v1
- Date: Wed, 4 Nov 2020 04:16:55 GMT
- Title: Learning Discriminative Representations for Fine-Grained Diabetic
Retinopathy Grading
- Authors: Li Tian, Liyan Ma, Zhijie Wen, Shaorong Xie, Yupeng Xu
- Abstract summary: Diabetic retinopathy is one of the leading causes of blindness.
To determine the disease severity levels, ophthalmologists need to focus on the discriminative parts of the fundus images.
- Score: 6.129288755571804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diabetic retinopathy (DR) is one of the leading causes of blindness. However,
no specific symptoms of early DR lead to a delayed diagnosis, which results in
disease progression in patients. To determine the disease severity levels,
ophthalmologists need to focus on the discriminative parts of the fundus
images. In recent years, deep learning has achieved great success in medical
image analysis. However, most works directly employ algorithms based on
convolutional neural networks (CNNs), which ignore the fact that the difference
among classes is subtle and gradual. Hence, we consider automatic image grading
of DR as a fine-grained classification task, and construct a bilinear model to
identify the pathologically discriminative areas. In order to leverage the
ordinal information among classes, we use an ordinal regression method to
obtain the soft labels. In addition, other than only using a categorical loss
to train our network, we also introduce the metric loss to learn a more
discriminative feature space. Experimental results demonstrate the superior
performance of the proposed method on two public IDRiD and DeepDR datasets.
Related papers
- Generalizing to Unseen Domains in Diabetic Retinopathy Classification [8.59772105902647]
We study the problem of generalizing a model to unseen distributions or domains in diabetic retinopathy classification.
We propose a simple and effective domain generalization (DG) approach that achieves self-distillation in vision transformers.
We report the performance of several state-of-the-art DG methods on open-source DR classification datasets.
arXiv Detail & Related papers (2023-10-26T09:11:55Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Less is More: Adaptive Curriculum Learning for Thyroid Nodule Diagnosis [50.231954872304314]
We propose an Adaptive Curriculum Learning framework, which adaptively discovers and discards the samples with inconsistent labels.
We also contribute TNCD: a Thyroid Nodule Classification dataset.
arXiv Detail & Related papers (2022-07-02T11:50:02Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Blindness (Diabetic Retinopathy) Severity Scale Detection [0.0]
Diabetic retinopathy (DR) is a severe complication of diabetes that can cause permanent blindness.
Timely diagnosis and treatment of DR are critical to avoid total loss of vision.
We propose a novel deep learning based method for automatic screening of retinal fundus images.
arXiv Detail & Related papers (2021-10-04T11:31:15Z) - Conversion and Implementation of State-of-the-Art Deep Learning
Algorithms for the Classification of Diabetic Retinopathy [0.0]
Inception-V3, VGG19, VGG16, ResNet50, and InceptionResNetV2 are evaluated through experiments.
They categorize medical images into five different classes based on DR severity.
Experimental results indicate that the ResNet50 has top performance for binary classification.
arXiv Detail & Related papers (2020-10-07T20:42:14Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - DcardNet: Diabetic Retinopathy Classification at Multiple Levels Based
on Structural and Angiographic Optical Coherence Tomography [1.9262162668141078]
A convolutional neural network (CNN) based method is proposed to fulfill a diabetic retinopathy (DR) classification framework.
A densely and continuously connected neural network with adaptive rate dropout (DcardNet) is designed for the DR classification.
Three separate classification levels are generated for each case based on the International Clinical Diabetic Retinopathy scale.
arXiv Detail & Related papers (2020-06-09T19:44:10Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z) - 1-D Convlutional Neural Networks for the Analysis of Pupil Size
Variations in Scotopic Conditions [79.71065005161566]
1-D convolutional neural network models are trained for classification of short-range sequences.
Model provides prediction with high average accuracy on a hold out test set.
arXiv Detail & Related papers (2020-02-06T17:25:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.