Identification of deep breath while moving forward based on multiple
body regions and graph signal analysis
- URL: http://arxiv.org/abs/2010.11734v1
- Date: Tue, 20 Oct 2020 08:26:50 GMT
- Title: Identification of deep breath while moving forward based on multiple
body regions and graph signal analysis
- Authors: Yunlu Wang, Cheng Yang, Menghan Hu, Jian Zhang, Qingli Li, Guangtao
Zhai, Xiao-Ping Zhang
- Abstract summary: This paper presents an unobtrusive solution that can automatically identify deep breath when a person is walking past the global depth camera.
In validation experiments, the proposed approach outperforms the comparative methods with the accuracy, precision, recall and F1 of 75.5%, 76.2%, 75.0% and 75.2%, respectively.
- Score: 45.62293065676075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an unobtrusive solution that can automatically identify
deep breath when a person is walking past the global depth camera. Existing
non-contact breath assessments achieve satisfactory results under restricted
conditions when human body stays relatively still. When someone moves forward,
the breath signals detected by depth camera are hidden within signals of trunk
displacement and deformation, and the signal length is short due to the short
stay time, posing great challenges for us to establish models. To overcome
these challenges, multiple region of interests (ROIs) based signal extraction
and selection method is proposed to automatically obtain the signal informative
to breath from depth video. Subsequently, graph signal analysis (GSA) is
adopted as a spatial-temporal filter to wipe the components unrelated to
breath. Finally, a classifier for identifying deep breath is established based
on the selected breath-informative signal. In validation experiments, the
proposed approach outperforms the comparative methods with the accuracy,
precision, recall and F1 of 75.5%, 76.2%, 75.0% and 75.2%, respectively. This
system can be extended to public places to provide timely and ubiquitous help
for those who may have or are going through physical or mental trouble.
Related papers
- Multi-objective Feature Selection in Remote Health Monitoring
Applications [2.219956413333153]
In some scenarios, an RF signal analysis framework may prioritize the performance of one task over that of others.
We employ a multi-objective optimization approach inspired by biological principles to select discriminative features that enhance the accuracy of breathing patterns recognition.
We present a contrariwise result to maximize user identification accuracy and minimize the system's capacity for breathing activity recognition.
arXiv Detail & Related papers (2024-01-10T20:27:43Z) - Non-Contact Breathing Rate Detection Using Optical Flow [0.0]
Breathing rate is a vital health metric that is an invaluable indicator of the overall health of a person.
This paper presents an investigation into a method of non-contact breathing rate detection using a motion detection algorithm, optical flow.
arXiv Detail & Related papers (2023-11-13T10:26:18Z) - Noncontact Respiratory Anomaly Detection Using Infrared Light-Wave Sensing [0.1759252234439348]
Abnormal breathing can indicate fatal health issues leading to further diagnosis and treatment.
This study simulated normal and different types of abnormal respiration using a robot that mimics human breathing patterns.
Time-series respiration data were collected using infrared light-wave sensing technology.
arXiv Detail & Related papers (2023-01-09T23:19:40Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - Collaborative Three-Tier Architecture Non-contact Respiratory Rate
Monitoring using Target Tracking and False Peaks Eliminating Algorithms [10.232449356645608]
Non-contact respiratory monitoring techniques have poor accuracy because they are sensitive to environmental influences like lighting and motion artifacts.
frequent contact between users and the cloud might cause service request delays and potentially the loss of personal data.
We proposed a non-contact respiratory rate monitoring system with a cooperative three-layer design to increase the precision of respiratory monitoring and decrease data transmission latency.
arXiv Detail & Related papers (2020-11-17T07:33:00Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - DeepBeat: A multi-task deep learning approach to assess signal quality
and arrhythmia detection in wearable devices [0.0]
We develop a multi-task deep learning method to assess signal quality and arrhythmia event detection in wearable photoplethysmography devices for real-time detection of atrial fibrillation (AF)
We train our algorithm on over one million simulated unlabeled physiological signals and fine-tune on a curated dataset of over 500K labeled signals from over 100 individuals from 3 different wearable devices.
We show that two-stage training can help address the unbalanced data problem common to biomedical applications where large well-annotated datasets are scarce.
arXiv Detail & Related papers (2020-01-01T07:41:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.