Noncontact Respiratory Anomaly Detection Using Infrared Light-Wave Sensing
- URL: http://arxiv.org/abs/2301.03713v4
- Date: Tue, 16 Apr 2024 16:00:09 GMT
- Title: Noncontact Respiratory Anomaly Detection Using Infrared Light-Wave Sensing
- Authors: Md Zobaer Islam, Brenden Martin, Carly Gotcher, Tyler Martinez, John F. O'Hara, Sabit Ekin,
- Abstract summary: Abnormal breathing can indicate fatal health issues leading to further diagnosis and treatment.
This study simulated normal and different types of abnormal respiration using a robot that mimics human breathing patterns.
Time-series respiration data were collected using infrared light-wave sensing technology.
- Score: 0.1759252234439348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human respiratory rate and its pattern convey essential information about the physical and psychological states of the subject. Abnormal breathing can indicate fatal health issues leading to further diagnosis and treatment. Wireless light-wave sensing (LWS) using incoherent infrared light shows promise in safe, discreet, efficient, and non-invasive human breathing monitoring without raising privacy concerns. The respiration monitoring system needs to be trained on different types of breathing patterns to identify breathing anomalies.The system must also validate the collected data as a breathing waveform, discarding any faulty data caused by external interruption, user movement, or system malfunction. To address these needs, this study simulated normal and different types of abnormal respiration using a robot that mimics human breathing patterns. Then, time-series respiration data were collected using infrared light-wave sensing technology. Three machine learning algorithms, decision tree, random forest and XGBoost, were applied to detect breathing anomalies and faulty data. Model performances were evaluated through cross-validation, assessing classification accuracy, precision and recall scores. The random forest model achieved the highest classification accuracy of 96.75% with data collected at a 0.5m distance. In general, ensemble models like random forest and XGBoost performed better than a single model in classifying the data collected at multiple distances from the light-wave sensing setup.
Related papers
- Respiratory Anomaly Detection using Reflected Infrared Light-wave
Signals [0.18641315013048293]
We present a non-contact respiratory anomaly detection method using incoherent light-wave signals reflected from the chest of a mechanical robot.
The developed system can be utilized at home or healthcare facilities as a smart, non-contact and discreet respiration monitoring method.
arXiv Detail & Related papers (2023-11-02T16:23:13Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Spirometry-based airways disease simulation and recognition using
Machine Learning approaches [0.0]
This study focuses on measures that can be easily recorded using a spirometer.
The signals used in this framework are simulated using the linear bi-compartment model of the lungs.
By changing the resistive and elastic parameters, data samples are realized simulating healthy, fibrosis and asthma breathing.
arXiv Detail & Related papers (2021-11-08T08:01:18Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Sleep Apnea and Respiratory Anomaly Detection from a Wearable Band and
Oxygen Saturation [1.2291501047353484]
There is a need in general medicine and critical care for a more convenient method to automatically detect sleep apnea from a simple, easy-to-wear device.
The objective is to automatically detect abnormal respiration and estimate the Apnea-Hypopnea-Index (AHI) with a wearable respiratory device.
Four models were trained: one each using the respiratory features only, a feature from the SpO2 (%)-signal only, and two additional models that use the respiratory features and the SpO2 (%)-feature.
arXiv Detail & Related papers (2021-02-24T02:04:57Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - Collaborative Three-Tier Architecture Non-contact Respiratory Rate
Monitoring using Target Tracking and False Peaks Eliminating Algorithms [10.232449356645608]
Non-contact respiratory monitoring techniques have poor accuracy because they are sensitive to environmental influences like lighting and motion artifacts.
frequent contact between users and the cloud might cause service request delays and potentially the loss of personal data.
We proposed a non-contact respiratory rate monitoring system with a cooperative three-layer design to increase the precision of respiratory monitoring and decrease data transmission latency.
arXiv Detail & Related papers (2020-11-17T07:33:00Z) - Identification of deep breath while moving forward based on multiple
body regions and graph signal analysis [45.62293065676075]
This paper presents an unobtrusive solution that can automatically identify deep breath when a person is walking past the global depth camera.
In validation experiments, the proposed approach outperforms the comparative methods with the accuracy, precision, recall and F1 of 75.5%, 76.2%, 75.0% and 75.2%, respectively.
arXiv Detail & Related papers (2020-10-20T08:26:50Z) - Multispectral Video Fusion for Non-contact Monitoring of Respiratory
Rate and Apnea [7.300192965401497]
Non-contact monitoring of respiration can be achieved with near- and far-infrared spectrum cameras.
We present a novel algorithm based on multispectral data fusion that aims at estimating respiratory rate (RR) during apnea.
Our findings may represent a step towards the use of cameras for vital sign monitoring in medical applications.
arXiv Detail & Related papers (2020-04-21T09:07:09Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.