論文の概要: Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking
- arxiv url: http://arxiv.org/abs/2409.16287v1
- Date: Tue, 24 Sep 2024 17:59:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 04:57:52.725201
- Title: Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking
- Title(参考訳): SAM2に基づくトラッキングを用いたオンライン軸推定による人工物体操作
- Authors: Xi Wang, Tianxing Chen, Qiaojun Yu, Tianling Xu, Zanxin Chen, Yiting Fu, Cewu Lu, Yao Mu, Ping Luo,
- Abstract要約: アーティキュレートされたオブジェクト操作は、オブジェクトの軸を慎重に考慮する必要がある、正確なオブジェクトインタラクションを必要とする。
従来の研究では、対話的な知覚を用いて関節のある物体を操作するが、通常、オープンループのアプローチは相互作用のダイナミクスを見渡すことに悩まされる。
本稿では,対話的知覚と3次元点雲からのオンライン軸推定を統合したクローズドループパイプラインを提案する。
- 参考スコア(独自算出の注目度): 59.87033229815062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered. Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics. To address this limitation, we present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds. Our method leverages any interactive perception technique as a foundation for interactive perception, inducing slight object movement to generate point cloud frames of the evolving dynamic scene. These point clouds are then segmented using Segment Anything Model 2 (SAM2), after which the moving part of the object is masked for accurate motion online axis estimation, guiding subsequent robotic actions. Our approach significantly enhances the precision and efficiency of manipulation tasks involving articulated objects. Experiments in simulated environments demonstrate that our method outperforms baseline approaches, especially in tasks that demand precise axis-based control. Project Page: https://hytidel.github.io/video-tracking-for-axis-estimation/.
- Abstract(参考訳): アーティキュレートされたオブジェクト操作は、オブジェクトの軸を慎重に考慮する必要がある、正確なオブジェクトインタラクションを必要とする。
従来の研究では、対話的な知覚を用いて関節のある物体を操作するが、通常、オープンループのアプローチは相互作用のダイナミクスを見渡すことに悩まされる。
この制限に対処するために,対話的知覚と3次元点雲のオンライン軸推定を融合したクローズドループパイプラインを提案する。
本手法は,対話的知覚の基礎として任意の対話的知覚技術を活用し,微妙な物体の動きを誘導し,進化するダイナミックシーンの点雲フレームを生成する。
これらの点雲はSegment Anything Model 2 (SAM2) を用いてセグメンテーションされ、その後、物体の移動部分が正確なオンライン軸推定のためにマスクされ、その後のロボット動作を導く。
提案手法は,調音対象を含む操作タスクの精度と効率を大幅に向上させる。
シミュレーション環境における実験により,本手法は,特に正確な軸制御を必要とするタスクにおいて,ベースラインアプローチよりも優れていることが示された。
Project Page: https://hytidel.github.io/ video-tracking-for-axis-estimation/
関連論文リスト
- Learning Manipulation by Predicting Interaction [85.57297574510507]
本稿では,インタラクションを予測して操作を学習する一般的な事前学習パイプラインを提案する。
実験の結果,MPIは従来のロボットプラットフォームと比較して10%から64%向上していることがわかった。
論文 参考訳(メタデータ) (2024-06-01T13:28:31Z) - GEARS: Local Geometry-aware Hand-object Interaction Synthesis [38.75942505771009]
本研究では, 相互作用領域近傍の局所物体形状を推定するための, 結合中心型センサを提案する。
学習の複雑さを軽減するための重要なステップとして、グローバルフレームからテンプレートハンドフレームにポイントを変換し、共有モジュールを使用して各関節のセンサ特徴を処理する。
これに続いて、異なる次元の関節間の相関を捉えることを目的とした知覚時間変換ネットワークが提供される。
論文 参考訳(メタデータ) (2024-04-02T09:18:52Z) - RISeg: Robot Interactive Object Segmentation via Body Frame-Invariant
Features [6.358423536732677]
本稿では,ロボットインタラクションとデザインされたボディーフレーム不変機能を用いて,不正確なセグメンテーションを補正する新しい手法を提案する。
オブジェクト分割精度を平均80.7%とすることで、散らばったシーンを正確にセグメント化するための対話型知覚パイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-04T05:03:24Z) - ROAM: Robust and Object-Aware Motion Generation Using Neural Pose
Descriptors [73.26004792375556]
本稿では,3次元オブジェクト認識キャラクタ合成における新しいシーンオブジェクトへのロバストさと一般化が,参照オブジェクトを1つも持たないモーションモデルをトレーニングすることで実現可能であることを示す。
我々は、オブジェクト専用のデータセットに基づいて訓練された暗黙的な特徴表現を活用し、オブジェクトの周りのSE(3)-同変記述体フィールドをエンコードする。
本研究では,3次元仮想キャラクタの動作と相互作用の質,および未知のオブジェクトを持つシナリオに対するロバスト性を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-08-24T17:59:51Z) - InterTracker: Discovering and Tracking General Objects Interacting with
Hands in the Wild [40.489171608114574]
既存の方法は相互作用する物体を見つけるためにフレームベースの検出器に依存している。
本稿では,対話オブジェクトの追跡に手動オブジェクトのインタラクションを活用することを提案する。
提案手法は最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2023-08-06T09:09:17Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
オブジェクトを操作するための訓練エージェントは、多くの課題を提起します。
本研究では,対象物体を探索する環境を探索し,位置が特定されると3次元座標を計算し,対象物が見えない場合でも3次元位置を推定する手法を提案する。
評価の結果,同じ感覚スイートにアクセス可能なモデルに比べて,成功率が3倍に向上したことが示された。
論文 参考訳(メタデータ) (2022-03-15T17:59:01Z) - Attentive and Contrastive Learning for Joint Depth and Motion Field
Estimation [76.58256020932312]
単眼視システムからシーンの3次元構造とともにカメラの動きを推定することは複雑な作業である。
モノクロ映像からの3次元物体運動場推定のための自己教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-13T16:45:01Z) - Where2Act: From Pixels to Actions for Articulated 3D Objects [54.19638599501286]
可動部を有する関節物体の押出しや引抜き等の基本動作に関連する高度に局所化された動作可能な情報を抽出する。
シミュレーションでネットワークをトレーニングできるオンラインデータサンプリング戦略を備えた学習から対話までのフレームワークを提案します。
私たちの学習モデルは、現実世界のデータにも転送します。
論文 参考訳(メタデータ) (2021-01-07T18:56:38Z) - "What's This?" -- Learning to Segment Unknown Objects from Manipulation
Sequences [27.915309216800125]
本稿では,ロボットマニピュレータを用いた自己教師型把握対象セグメンテーションのための新しいフレームワークを提案する。
本稿では,モーションキューとセマンティック知識を共同で組み込んだ,エンドツーエンドのトレーニング可能な単一アーキテクチャを提案する。
我々の手法は、運動ロボットや3Dオブジェクトモデルの視覚的登録にも、正確な手眼の校正や追加センサーデータにも依存しない。
論文 参考訳(メタデータ) (2020-11-06T10:55:28Z) - Hindsight for Foresight: Unsupervised Structured Dynamics Models from
Physical Interaction [24.72947291987545]
エージェントが世界と対話することを学ぶための鍵となる課題は、オブジェクトの物理的性質を推論することである。
本研究では,ラベルのない3次元点群と画像から直接,ロボットのインタラクションのダイナミクスをモデル化するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-08-02T11:04:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。