Factorized Neural Processes for Neural Processes: $K$-Shot Prediction of
Neural Responses
- URL: http://arxiv.org/abs/2010.11810v1
- Date: Thu, 22 Oct 2020 15:43:59 GMT
- Title: Factorized Neural Processes for Neural Processes: $K$-Shot Prediction of
Neural Responses
- Authors: R. James Cotton, Fabian H. Sinz, Andreas S. Tolias
- Abstract summary: We develop a Factorized Neural Process to infer a neuron's tuning function from a small set of stimulus-response pairs.
We show on simulated responses that the predictions and reconstructed receptive fields from the Neural Process approach ground truth with increasing number of trials.
We believe this novel deep learning systems identification framework will facilitate better real-time integration of artificial neural network modeling into neuroscience experiments.
- Score: 9.792408261365043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, artificial neural networks have achieved state-of-the-art
performance for predicting the responses of neurons in the visual cortex to
natural stimuli. However, they require a time consuming parameter optimization
process for accurately modeling the tuning function of newly observed neurons,
which prohibits many applications including real-time, closed-loop experiments.
We overcome this limitation by formulating the problem as $K$-shot prediction
to directly infer a neuron's tuning function from a small set of
stimulus-response pairs using a Neural Process. This required us to developed a
Factorized Neural Process, which embeds the observed set into a latent space
partitioned into the receptive field location and the tuning function
properties. We show on simulated responses that the predictions and
reconstructed receptive fields from the Factorized Neural Process approach
ground truth with increasing number of trials. Critically, the latent
representation that summarizes the tuning function of a neuron is inferred in a
quick, single forward pass through the network. Finally, we validate this
approach on real neural data from visual cortex and find that the predictive
accuracy is comparable to -- and for small $K$ even greater than --
optimization based approaches, while being substantially faster. We believe
this novel deep learning systems identification framework will facilitate
better real-time integration of artificial neural network modeling into
neuroscience experiments.
Related papers
- Growing Deep Neural Network Considering with Similarity between Neurons [4.32776344138537]
We explore a novel approach of progressively increasing neuron numbers in compact models during training phases.
We propose a method that reduces feature extraction biases and neuronal redundancy by introducing constraints based on neuron similarity distributions.
Results on CIFAR-10 and CIFAR-100 datasets demonstrated accuracy improvement.
arXiv Detail & Related papers (2024-08-23T11:16:37Z) - Convolutional Conditional Neural Processes [6.532867867011488]
This thesis advances neural processes in three ways.
ConvNPs improve data efficiency by building in a symmetry called translationvariance.
GNPs directly parametrise dependencies in the predictions of a neural process.
AR CNPs train a neural process without any modifications to the model or training procedure and, at test time, roll out the model in an autoregressive fashion.
arXiv Detail & Related papers (2024-08-18T19:53:38Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
State-of-the-art systems neuroscience experiments yield large-scale multimodal data, and these data sets require new tools for analysis.
Inspired by the success of large pretrained models in vision and language domains, we reframe the analysis of large-scale, cellular-resolution neuronal spiking data into an autoregressive generation problem.
We first trained Neuroformer on simulated datasets, and found that it both accurately predicted intrinsically simulated neuronal circuit activity, and also inferred the underlying neural circuit connectivity, including direction.
arXiv Detail & Related papers (2023-10-31T20:17:32Z) - Automated Natural Language Explanation of Deep Visual Neurons with Large
Models [43.178568768100305]
This paper proposes a novel post-hoc framework for generating semantic explanations of neurons with large foundation models.
Our framework is designed to be compatible with various model architectures and datasets, automated and scalable neuron interpretation.
arXiv Detail & Related papers (2023-10-16T17:04:51Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks [4.874780144224057]
We use a variant of deep generative models called - CycleGAN, to learn the unknown mapping between pre- and post-learning neural activities.
We develop an end-to-end pipeline to preprocess, train and evaluate calcium fluorescence signals, and a procedure to interpret the resulting deep learning models.
arXiv Detail & Related papers (2021-11-25T13:24:19Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.