論文の概要: Rediscovering the Slavic Continuum in Representations Emerging from
Neural Models of Spoken Language Identification
- arxiv url: http://arxiv.org/abs/2010.11973v1
- Date: Thu, 22 Oct 2020 18:18:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 06:51:17.672111
- Title: Rediscovering the Slavic Continuum in Representations Emerging from
Neural Models of Spoken Language Identification
- Title(参考訳): 言語識別のニューラルモデルから現れる表現におけるスラヴ連続体の再発見
- Authors: Badr M. Abdullah, Jacek Kudera, Tania Avgustinova, Bernd M\"obius,
Dietrich Klakow
- Abstract要約: 音声信号におけるスラヴ語識別のためのニューラルモデルを提案する。
本稿では,言語関連性の客観的尺度を反映しているかどうかを調査するために,その創発的表現を分析した。
- 参考スコア(独自算出の注目度): 16.369477141866405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have been employed for various spoken language
recognition tasks, including tasks that are multilingual by definition such as
spoken language identification. In this paper, we present a neural model for
Slavic language identification in speech signals and analyze its emergent
representations to investigate whether they reflect objective measures of
language relatedness and/or non-linguists' perception of language similarity.
While our analysis shows that the language representation space indeed captures
language relatedness to a great extent, we find perceptual confusability
between languages in our study to be the best predictor of the language
representation similarity.
- Abstract(参考訳): ディープニューラルネットワークは、音声言語識別などの定義によって多言語的なタスクを含む、さまざまな音声言語認識タスクに使用されている。
本稿では、音声信号におけるスラヴ語識別のためのニューラルモデルを提案し、その創発的表現を分析し、言語関連性の客観的尺度や言語類似性に対する非言語主義者の認識を反映しているかを検討する。
分析の結果,言語表現空間は言語関連性をかなり捉えていることが明らかとなったが,言語表現の類似性の予測には,言語間の知覚的コンフュージョンが最適であることがわかった。
関連論文リスト
- Analyzing The Language of Visual Tokens [48.62180485759458]
我々は、離散的な視覚言語を分析するために、自然言語中心のアプローチをとる。
トークンの高度化はエントロピーの増大と圧縮の低下を招き,トークンが主にオブジェクト部品を表すことを示す。
また、視覚言語には結合的な文法構造が欠如していることが示され、自然言語と比較して難易度が高く、階層構造が弱いことが判明した。
論文 参考訳(メタデータ) (2024-11-07T18:59:28Z) - A Computational Model for the Assessment of Mutual Intelligibility Among
Closely Related Languages [1.5773159234875098]
密接に関連する言語は、ある言語の話者が積極的に学習することなく他の言語の話者を理解することができる言語類似性を示す。
相互の知性は程度によって異なり、典型的には精神言語実験でテストされる。
本稿では,人間による言語学習の認知過程を近似するために,線形識別学習システムを用いたコンピュータ支援手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T11:32:13Z) - MoLE : Mixture of Language Experts for Multi-Lingual Automatic Speech
Recognition [12.23416994447554]
我々はMixture-of-Language-Expert(MoLE)という多言語音声認識ネットワークを提案する。
MoLEは、任意の言語で入力された音声から言語表現を分析し、軽量な言語トークン化器で言語固有の専門家を活性化する。
信頼性に基づいて、アクティベートされた専門家と言語に依存しない専門家を集約し、言語条件の埋め込みを表現する。
論文 参考訳(メタデータ) (2023-02-27T13:26:17Z) - Perception Point: Identifying Critical Learning Periods in Speech for
Bilingual Networks [58.24134321728942]
ディープニューラルベース視覚唇読解モデルにおける認知的側面を比較し,識別する。
我々は、認知心理学におけるこれらの理論と独自のモデリングの間に強い相関関係を観察する。
論文 参考訳(メタデータ) (2021-10-13T05:30:50Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
言語モデルと翻訳モデルは,単語の埋め込み,構文的・意味的タスク,将来的な単語埋め込みとの間を円滑に介在する低次元構造を示す。
この表現埋め込みは、各特徴空間が、fMRIを用いて記録された自然言語刺激に対する人間の脳反応にどれだけうまく対応しているかを予測することができる。
これは、埋め込みが脳の自然言語表現構造の一部を捉えていることを示唆している。
論文 参考訳(メタデータ) (2021-06-09T22:59:12Z) - Syntax Representation in Word Embeddings and Neural Networks -- A Survey [4.391102490444539]
本稿では,単語表現に含まれる統語的情報量を評価するためのアプローチについて述べる。
主に、言語モデリングタスクにおける英語単言語データの再検討について要約する。
本稿では,どの事前学習モデルと言語表現が構文的タスクに最も適しているかを説明する。
論文 参考訳(メタデータ) (2020-10-02T15:44:58Z) - Finding Universal Grammatical Relations in Multilingual BERT [47.74015366712623]
mBERT表現のサブスペースは、英語以外の言語で構文木の距離を回復することを示す。
我々は,mBERTが構文依存ラベルの表現を学習する証拠を提供する教師なし解析手法を提案する。
論文 参考訳(メタデータ) (2020-05-09T20:46:02Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。