A Feasible Level Proximal Point Method for Nonconvex Sparse Constrained
Optimization
- URL: http://arxiv.org/abs/2010.12169v1
- Date: Fri, 23 Oct 2020 05:24:05 GMT
- Title: A Feasible Level Proximal Point Method for Nonconvex Sparse Constrained
Optimization
- Authors: Digvijay Boob, Qi Deng, Guanghui Lan, Yilin Wang
- Abstract summary: We present a new model of a general convex or non objective machine machine objectives.
We propose an algorithm that solves a constraint with gradually relaxed point levels of each subproblem.
We demonstrate the effectiveness of our new numerical scale problems.
- Score: 25.73397307080647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonconvex sparse models have received significant attention in
high-dimensional machine learning. In this paper, we study a new model
consisting of a general convex or nonconvex objectives and a variety of
continuous nonconvex sparsity-inducing constraints. For this constrained model,
we propose a novel proximal point algorithm that solves a sequence of convex
subproblems with gradually relaxed constraint levels. Each subproblem, having a
proximal point objective and a convex surrogate constraint, can be efficiently
solved based on a fast routine for projection onto the surrogate constraint. We
establish the asymptotic convergence of the proposed algorithm to the
Karush-Kuhn-Tucker (KKT) solutions. We also establish new convergence
complexities to achieve an approximate KKT solution when the objective can be
smooth/nonsmooth, deterministic/stochastic and convex/nonconvex with complexity
that is on a par with gradient descent for unconstrained optimization problems
in respective cases. To the best of our knowledge, this is the first study of
the first-order methods with complexity guarantee for nonconvex
sparse-constrained problems. We perform numerical experiments to demonstrate
the effectiveness of our new model and efficiency of the proposed algorithm for
large scale problems.
Related papers
- Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
We propose a Trust Sequential Quadratic Programming method to find both first and second-order stationary points.
To converge to first-order stationary points, our method computes a gradient step in each iteration defined by minimizing a approximation of the objective subject.
To converge to second-order stationary points, our method additionally computes an eigen step to explore the negative curvature the reduced Hessian matrix.
arXiv Detail & Related papers (2024-09-24T04:39:47Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Projection-Free Variance Reduction Methods for Stochastic Constrained Multi-Level Compositional Optimization [34.628967272528044]
This paper investigates projection-free algorithms for constrained multi-level optimization functions.
By using a stage-wise adaptation, we obtain complexities for convex and strongly convex functions.
arXiv Detail & Related papers (2024-06-06T06:56:56Z) - Low-Rank Extragradient Methods for Scalable Semidefinite Optimization [0.0]
We focus on high-dimensional and plausible settings in which the problem admits a low-rank solution.
We provide several theoretical results proving that, under these circumstances, the well-known Extragradient method converges to a solution of the constrained optimization problem.
arXiv Detail & Related papers (2024-02-14T10:48:00Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Data-Driven Minimax Optimization with Expectation Constraints [9.373649142701803]
We propose a class of efficient primal-dual algorithms to tackle the minimax expectation-constrained problem.
We show that our algorithms converge at the optimal rate of $mathcalO(frac1sqrtN)$.
arXiv Detail & Related papers (2022-02-16T05:23:27Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Accelerated Algorithms for Convex and Non-Convex Optimization on
Manifolds [9.632674803757475]
We propose a scheme for solving convex and non- optimization problems on distance.
Our proposed algorithm adapts to the level of complexity in the objective function.
arXiv Detail & Related papers (2020-10-18T02:48:22Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.