論文の概要: Option Hedging with Risk Averse Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2010.12245v1
- Date: Fri, 23 Oct 2020 09:08:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 22:18:00.409065
- Title: Option Hedging with Risk Averse Reinforcement Learning
- Title(参考訳): リスク回避強化学習によるオプションヘッジ
- Authors: Edoardo Vittori, Michele Trapletti, Marcello Restelli
- Abstract要約: リスク回避型強化学習がヘッジオプションにどのように使用できるかを示す。
我々は,バニラオプションヘッジ環境に最先端のリスク逆アルゴリズムを適用した。
- 参考スコア(独自算出の注目度): 34.85783251852863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we show how risk-averse reinforcement learning can be used to
hedge options. We apply a state-of-the-art risk-averse algorithm: Trust Region
Volatility Optimization (TRVO) to a vanilla option hedging environment,
considering realistic factors such as discrete time and transaction costs.
Realism makes the problem twofold: the agent must both minimize volatility and
contain transaction costs, these tasks usually being in competition. We use the
algorithm to train a sheaf of agents each characterized by a different risk
aversion, so to be able to span an efficient frontier on the volatility-p\&l
space. The results show that the derived hedging strategy not only outperforms
the Black \& Scholes delta hedge, but is also extremely robust and flexible, as
it can efficiently hedge options with different characteristics and work on
markets with different behaviors than what was used in training.
- Abstract(参考訳): 本稿では,リスク回避型強化学習がヘッジオプションにどのように役立つかを示す。
信頼領域変動最適化(trvo:trust region volatility optimization)をバニラオプションヘッジ環境に適用し、離散時間やトランザクションコストといった現実的な要因を考慮に入れる。
エージェントはボラティリティを最小限に抑え、トランザクションコストを抑えなければならない。
このアルゴリズムを用いて,異なるリスク回避によって特徴付けられるエージェントの層をトレーニングし,ボラティリティ-p\&l空間上の効率的なフロンティアを分散させることができる。
その結果、派生したヘッジ戦略はブラック・アンド・ショルズ・デルタ・ヘッジを上回るだけでなく、非常に堅牢で柔軟なものであり、異なる特性の選択肢を効率的にヘッジし、トレーニングで使われたものと異なる振る舞いの市場で働くことができることがわかった。
関連論文リスト
- A Risk-Averse Framework for Non-Stationary Stochastic Multi-Armed
Bandits [0.0]
医療や金融のような高ボラティリティの分野では、素直な報酬アプローチは学習問題の複雑さを正確に捉えないことが多い。
非定常環境で動作する適応型リスク認識戦略の枠組みを提案する。
論文 参考訳(メタデータ) (2023-10-24T19:29:13Z) - Robust Risk-Aware Option Hedging [2.405471533561618]
本稿では、経路依存型金融デリバティブに関連するリスクを軽減するために、ロバストリスク認識強化学習(RL)の可能性を示す。
この手法をバリアオプションのヘッジに適用し、エージェントがリスク回避からリスク探究へと移行するにつれて、最適なヘッジ戦略が歪曲する方法について強調する。
論文 参考訳(メタデータ) (2023-03-27T13:57:13Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
リスク逆強化学習(RL)では、リターンのリスク測定を最適化することが目標である。
特定の条件下では、これは必然的に局所最適障壁につながることを証明し、それを回避するためのソフトリスク機構を提案する。
迷路ナビゲーション,自律運転,資源配分ベンチマークにおいて,リスク回避の改善を示す。
論文 参考訳(メタデータ) (2022-05-10T19:40:52Z) - Online Learning with Knapsacks: the Best of Both Worlds [54.28273783164608]
オンライン学習の課題として,意思決定者が,リソース制約の有限セットに違反することなく,期待する報酬を最大化したい,という課題を提起する。
当社のフレームワークは,意思決定者がそのエビデンスを柔軟かつコスト論的に扱えるようにします。
論文 参考訳(メタデータ) (2022-02-28T12:10:48Z) - Safe Online Bid Optimization with Return-On-Investment and Budget
Constraints subject to Uncertainty [87.81197574939355]
最適化問題と学習問題の両方について検討する。
我々は、潜在的に線形な数の制約違反を犠牲にして、サブ線形後悔を保証するアルゴリズム、すなわちGCBを提供する。
より興味深いことに、我々はGCB_safe(psi,phi)というアルゴリズムを提供し、サブ線形擬似回帰と安全性w.h.p.の両方を、耐性 psi と phi を受け入れるコストで保証する。
論文 参考訳(メタデータ) (2022-01-18T17:24:20Z) - Reinforcement learning for options on target volatility funds [0.0]
我々は、目標ボラティリティ戦略(TVS)に基づくリスクの高い証券のヘッジによる資金調達コストの上昇に対処する。
我々はこの問題をブラック・アンド・ショールズ(BS)のシナリオで解析的に解いた。
次に、局所ボラティリティ(LV)モデルの下で最も保守的な価格につながる資金組成を決定するために強化学習(RL)技術を使用します。
論文 参考訳(メタデータ) (2021-12-03T10:55:11Z) - Deep Learning Statistical Arbitrage [0.0]
本稿では,統計的仲裁のための統一的な概念枠組みを提案し,新しいディープラーニングソリューションを開発した。
我々は、条件付き遅延資産価格要素から残余ポートフォリオとして類似資産の仲裁ポートフォリオを構築する。
我々は、これらの残余ポートフォリオの時系列信号を、最も強力な機械学習時系列ソリューションの1つを用いて抽出する。
論文 参考訳(メタデータ) (2021-06-08T00:48:25Z) - Learning Strategies in Decentralized Matching Markets under Uncertain
Preferences [91.3755431537592]
エージェントの選好が不明な場合,共有資源の不足の設定における意思決定の問題について検討する。
我々のアプローチは、再生されたカーネルヒルベルト空間における好みの表現に基づいている。
エージェントの期待した利益を最大化する最適な戦略を導出する。
論文 参考訳(メタデータ) (2020-10-29T03:08:22Z) - Time your hedge with Deep Reinforcement Learning [0.0]
深層強化学習(DRL)は、市場情報とヘッジ戦略の割り当て決定の間のダイナミックな依存関係を作成することで、この課題に対処することができる。
i)行動決定に追加の文脈情報を使用し、(ii)共通の資産運用者の1日のラグ転倒を考慮し、ヘッジの再均衡を図るための観察と行動の間に1期間の遅れがあり、(iii)アンカードウォークフォワードトレーニングと呼ばれる反復的な試験方法により、安定性とロバスト性の観点から完全にテストされており、(iv)時系列のkフォールドクロスバリデーションと同様に、ヘッジの活用を可能にする。
論文 参考訳(メタデータ) (2020-09-16T06:43:41Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
深層強化学習を用いたコスト依存型ポートフォリオ選択手法を提案する。
具体的には、価格系列パターンと資産相関の両方を抽出するために、新しい2ストリームポートフォリオポリシーネットワークを考案した。
蓄積したリターンを最大化し、強化学習によるコストの両立を抑えるため、新たなコスト感受性報酬関数が開発された。
論文 参考訳(メタデータ) (2020-03-06T06:28:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。